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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become the workhorse in

macroeconomics, capturing aggregate dynamics over the business cycle. They are frequently

used in academic research and to assess various policy interventions. There is a tradition in

macroeconomics to model financial frictions, but until before the recent financial turmoils,

with large effects on the real economy, these models were silent about shocks that origi-

nate in the financial sector (see Jermann and Quadrini, 2012).1 Given the importance and

relevance of these models in both theoretical and applied research, surprisingly little work

has been published on reconciling business cycle facts with asset pricing implications (see

the results in Jermann, 1998; Tallarini, 2000; Rudebusch and Swanson, 2008). The recent

economic and credit crises intensified the desire to link macro and finance.2 Conceptually,

the financial models should benefit from specifying the stochastic discount factor consistent

with macro-dynamics, whereas the macroeconomic models could benefit from rich financial

data.3 Essential features of this strand of literature are the macro-finance interaction, the

mixed frequency of macroeconomic and financial data, and latent variables. Yet, there is

no clear consensus on how macro and financial data should be linked consistently, and how

data are used efficiently in the estimation of macro-finance models.

Our aim is to develop a paradigm in which macroeconomics, finance and econometrics

are coherently linked. This paper provides a framework for estimation of dynamic equilib-

rium models with both macro and financial variables, taking account of mixed-frequencies

and latent variables. We believe that a structural estimation approach can shed light on the

channels through which financial markets and the real economy interact. This is important

for the design of monetary and fiscal policies and to evaluate certain policy measures. Specifi-

cally, our contribution is threefold. First, we propose using DSGE models in continuous time

to facilitate incorporation of financial market variables in a structural manner. Second, we

propose and develop using martingale estimating functions (MEF) for the estimation of such

macro-finance models. Our continuous-time formulation and the MEF approach naturally

1The literature on the financial sector propagating shocks emerged from the seminal contributions by
Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke, Gertler, and Gilchrist (1999).

2Recent developments illustrate that such unified framework is promising and intriguing: Gertler and
Karadi (2011) present a DSGE model with financial frictions in which intermediaries face balance sheet
constraints. Hence, unconventional monetary policy, by expanding central bank credit intermediation, may
serve as a complement to financial intermediation. Brunnermeier and Sannikov (2014) develop a macroe-
conomic model with a financial sector and endogenous leverage, which leads to crisis episodes showing a
mechanism how small shocks can have potentially large effects on the real economy.

3There are developments incorporating macro factors in financial models of the term structure (Ang and
Piazzesi, 2003; Dewachter and Lyrio, 2006; Diebold, Rudebusch, and Aruoba, 2006; Hördahl, Tristani, and
Vestin, 2006; Rudebusch and Wu, 2008) and incorporating financial factors in the estimation of macro models
(Ang, Piazzesi, and Wei, 2006; van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez, 2012).
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incorporate variables arriving at different frequencies by a model-based time-aggregation

and thus eases statistical inference in the case of mixed-frequency data. Third, we extend

the baseline MEF approach to further consider the case of mixed-frequency data estimation

and additionally develop techniques for estimation of dynamic equilibrium models in case of

latent variables by a simulation-based MEF.

We make the link between macro and financial markets explicit by showing how finan-

cial market data (say, interest rates or return data) can be used to identify the structural

parameters, which characterize preferences and technology. To make the least stringent

timing assumption we cast our DSGE model in continuous time, then solve for the general

equilibrium of the real economy and asset prices, and develop three alternative estimation

procedures. We consider off-the-shelf regression-based methods (combined with minimum-

distance to identify structural parameters), the general method of moments (GMM), and the

martingale estimating functions (MEF). Our continuous-time formulation is useful in three

dimensions: (i) to place structure on the residuals in the regression-based methods, (ii) to

obtain the general equilibrium dynamics in terms of data and parameters for the GMM and

MEF approaches, and (iii) to account for the dependence among economic variables during

the observation interval.

Our analysis is motivated by the fact that financial market data typically are available

at higher frequency and of better quality than aggregate macro data (e.g., not subject to

revision). In a unified framework, financial variables provide an additional source of evidence

on the state of the economy, beyond macro series. So far only a few researchers have made

use of this property in DSGE models. One apparent challenge is that discrete-time models

are not time invariant (see Marcellino, 1999; Foroni and Marcellino, 2014). Put differently,

the parameter estimates can only properly be interpreted in the way we solve our models

and in the context of the particular rate at which we sample the underlying process.4 But

any fixed period length is arbitrary. Moreover, the frequency at which economic agents

make their decisions may not necessarily coincide with the observation frequency of either

macro or financial variables. Formulating structural models in continuous time offers a way

forward. Our approach yields explicit functional forms of the relations among observables

without taking a stand of the frequency at which economic agents make there decisions.

Having at hand these functional forms, the availability of financial data at higher frequency

(say, daily) than consumption and production (monthly or quarterly) then allows precise

approximation of integrals by summation over days. Because the structural parameters

4The temporal aggregation literature started with Amemiya and Wu (1972); Geweke (1978). Others
noted how the time-invariance problem relates to the behavior of agents (Christiano and Eichenbaum, 1987).
Recent contributions include Kim (2010) and Giannone, Monti, and Reichlin (2014)
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enter into the coefficients on these terms, financial data help us for identification. We also

show how the MEF approach can be extended to cope with (more general) mixed-frequency

data and latent variables.

We depart from the traditional discrete-time formulation of DSGE models and their

estimation for three related technical reasons.5 First, there is no need to perform numerical

integration to compute expectations, since the Hamilton-Jacobi-Bellman (HJB) equation

is non-stochastic, thus simplifying computation of the first-order principles. Second, some

solutions allow for an analytical likelihood function, simplifying the inference on structural

parameters even in the presence of nonlinearities and non-normalities (see Posch, 2009).

Third, many seminal models in finance are stated in continuous time (such as the equilibrium

models of Vasicek, 1977; Cox, Ingersoll, and Ross, 1985b), which is particulary useful in the

development of a unified framework in macroeconomics and finance.

Our work builds on a tradition in macroeconomics estimating continuous-time models,

formulated as systems of (linear) stochastic differential equations.6 The traditional approach

is to solve the system which implies a coefficient matrix that is a function of the exponential

of a matrix, which in turn depends on the structural model parameters (cf. Phillips, 1972).

As illustrated in McCrorie (2009), this complicates the identification due to the aliasing

phenomenon: The distinct stochastic processes may look identical when sampled at discrete

intervals (see Hansen and Scheinkman, 1995, p. 769).7 In this paper, we adopt an alternative

approach of integrating the logarithmic (nonlinear) system to get an ‘exact’ discrete-time

analog. The resulting system is in logarithmic growth rates rather than in levels. It involves

a coefficient matrix linear in a set of known functions of the structural parameters, and does

not involve any matrix exponential. An analysis whether our approach alleviates the aliasing

problem in the linear model is interesting, but beyond the scope of this paper.

Our martingale estimating functions (MEF) approach benefits from the continuous time

structure of the dynamic equilibrium model. The model provides martingale increments.

The martingale estimating functions are defined as a weighted sum of these martingale

increments. The optimal weights in MEF are time-varying and depend on the conditional

5An non-exhaustive list of references on the estimation of discrete-time DSGE models are Ruge-Murcia
(2007); Fernández-Villaverde and Rubio-Ramı́rez (2007) and An and Schorfheide (2007). While the first
two references show how to use standard econometric methods and the particle filter (instead of the linear
Kalman filter) for estimation, the latter reviews Bayesian methods. In an accompanying web appendix we
show in Appendix A that an Euler approximation could be used to apply this toolbox to continuous-time
DSGE models. We do not follow this route because the continuous-time formulation naturally accounts for
the different observation frequencies of macro and financial market data, which in this case would be lost.

6Seminal papers are contributions by Bergstrom (1966); Sims (1971); Phillips (1972, 1991), whereas the
rational expectation models are due to Hansen and Sargent (1991); Hansen and Scheinkman (1995).

7Hence, one may argue that the use of continuous-time models is not a panacea. What we can gain in
time invariance can be at the cost of needing to solve a more severe econometric identification problem.
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variance of the martingale increment and the conditional mean of the parameter derivatives,

see Christensen and Sørensen (2008). In the models we consider, these optimal weights

can be analytically derived and depend on the structural model parameters. MEF exactly

identifies all structural parameters of the system, through its set-up and by having both

the weights and martingale increments depend on the structural parameters. We contrast

this estimation approach with GMM, which can be shown to be less efficient than the MEF

estimator. In addition we discuss a variety of regression-based estimators that through a

two-step approach first provide estimates of a reduced form of our models and then are

mapped to structural parameters through minimum-distance estimation.

We extend the MEF approach in two directions. First, we further develop the mixed-

frequency nature of our set-up. The baseline MEF approach utilizes financial market data

at a daily level to develop monthly and quarterly proxies that are used for estimation at

monthly or quarterly frequency. In our Mixed-Frequency MEF (MF-MEF) approach we

develop an approach that allows for variables to be observed at different frequencies. We

stipulate the model at a high frequency, monthly in our applications, and use the other

variables in the frequency at which they occur. For example, with monthly consumption

series we consider the quarterly GDP series. We implement the approach by considering the

actual quarterly output in the month that it becomes available and a model based prediction

for the months in the quarter where output is not available. The monthly consumption and

quarterly DGP are combined with the monthly proxy based on the daily financial variable.

Using mixed-frequency data for estimation recently has received a lot of attention in the

literature, see, e.g., Ghysels, Sinko, and Valkanov (2007), Andreou, Ghysels, and Kourtellos

(2010), Andreou, Ghysels, and Kourtellos (2013) and Schorfheide and Song (2014). Our

MF-MEF approach provides a structural approach for mixed-frequency estimation.

Second, we extend the MEF set-up to allow for latent variables. In the Simulated MEF

(SMEF) approach we simulate the latent variable using the process implied by the model.

The simulated paths are used to obtain the conditional expectations that are used in the MEF

approach. Model-consistent proxies are used to keep the simulated paths from becoming too

dispersed over time. In our implementation we consider an unobserved spot rate, but the

approach can be generalized to include other latent variables such as expected inflation,

stochastic volatility, (stochastic) discount rates, etc.

We illustrate our approach for a simple DSGE model where the equilibrium dynamics are

available in terms of observable quantities, namely, consumption, output, and interest rates.

It is important to study the properties of our estimation methods in simple continuous-time

models before addressing more elaborate models at the vanguard of the DSGE literature,

including financial intermediation and various frictions. We assume logarithmic preferences
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together with a linear technology as an important benchmark case because it allows for an

analytical solution. Moreover, we have some choice in modeling the interest rate dynamics.

Specifications of this kind date back to Cox, Ingersoll, and Ross (1985a), and are frequently

used in macro-finance models. Since the MEF approach is not limited to analytical solutions,

but applicable to all cases where the researcher is provided with a solution in the form of

policy functions, our illustrating example can be used as a point of reference for exploring

broader classes of dynamic general equilibrium models.

We apply our model to both simulated and empirical data on production, consumption,

and interest rates. Our Monte Carlo study then examines the properties of our estimation

approaches in 1,000 simulated data sets of 25 years each for both monthly and quarterly

macro data, along with daily financial market data, roughly in line with the availability of

empirical figures. The results show that the GMM and MEF approaches generally are able to

accurately estimate the parameters of the (correctly specified) model, and that the interest

rate data helps identifying the structural parameters.

Our empirical application to 30 years of U.S. data shows that the system can be applied

to a combination of macro and financial series. The results indicate a long run mean of

the interest rate around 10% with a 1.5% volatility annually and only weak mean reversion.

Comparing our simulated results to empirical estimates and/or the estimated interest rate,

when treating it as a latent variable, indicates potential misspecification of the chosen model.

Nonetheless, due to its simplicity and tractability, the AK-Vasicek model specification should

provide a benchmark for future research.

The paper proceeds as follows. Section 2 summarizes the macroeconomic theory and

solution techniques. Section 3 presents the estimation strategies. Sections 4 and 5 provide

Monte Carlo evidence on small sample properties of our estimation strategies and report

empirical estimates. Section 6 concludes.

2 The Macro-Finance Framework

We consider dynamic stochastic general equilibrium models cast in continuous time (Eaton,

1981; Cox, Ingersoll, and Ross, 1985a). This allows the application of Itô’s calculus, and in

some cases we can solve the model analytically to obtain closed-form expressions facilitating

statistical inference.

2.1 The model

Production possibilities. At each point in time, certain amounts of capital, labor, and factor

productivity are available in the economy, and these are combined to produce output. The
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production function is a constant returns to scale technology subject to regularity conditions

(see Chang, 1988),

Yt = AtF (Kt, L), (1)

where Kt is the aggregate capital stock, L is the constant population size, and At is total

factor productivity (TFP), in turn driven by a standard Brownian motion Bt,

dAt = µ(At)dt+ η(At)dBt, (2)

with µ(At) and η(At) generic drift and volatility functions satisfying regularity conditions.8

The capital stock increases if gross investment It exceeds capital depreciation,

dKt = (It − δKt)dt+ σKtdZt, (3)

where δ denotes the mean and σ the volatility of the stochastic depreciation rate, driven by

another standard Brownian motion Zt.

Equilibrium properties. In equilibrium, factors of production are rewarded with marginal

products rt = YK and wt = YL, subscripts K and L indicating derivatives with respect to

Kt and L, and the goods market clears, Yt = Ct + It. By an application of Itô’s formula

(e.g., Protter, 2004; Sennewald, 2007), the technology in (2), capital accumulation in (3),

and market clearing condition together imply that output evolves according to

dYt = YAdAt + YKdKt +
1
2
YKKσ

2K2
t dt

= (µ(At)YA + (It − δKt)YK + 1
2
YKKσ

2K2
t )dt+ YAη(At)dBt + σYKKtdZt. (4)

This corresponds to equation (1) in Cox, Ingersoll, and Ross (1985a) (henceforth CIR), where

It − δKt is the amount of the output good allocated to the production process. In general,

Yt can be a nonlinear activity, determined by the output elasticity of capital.9

Preferences. We consider an economy with a single consumer, which we interpret as a

representative “stand in” for a large number of identical consumers. The consumer maximizes

expected additively separable discounted life-time utility given by

U0 ≡ E0

∫ ∞

0

e−ρtu(Ct, At)dt, uC > 0, uCC < 0, (5)

subject to

dKt = ((rt − δ)Kt + wtL− Ct)dt+ σKtdZt, (6)

8We assume that E(At) = A ∈ R+ exists, and that the integral describing life-time utility in (5) below is
bounded, so that the value function is well-defined.

9Unless we consider a nonlinear production process, our model is formally included in the CIR economy.
We are not aware of any paper estimating the model’s structural parameters using macro and financial data.
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where ρ is the subjective rate of time preference, rt is the rental rate of capital, and wt is

the labor wage rate. We do not consider financial claims, which can be thought of being

in zero net supply. The paths of factor rewards are taken as given by the representative

consumer. The generic utility flow function specification u(Ct, At) allows the possibility that

technology enters as an argument. This may represent a quest for technology and is included

for comparability with CIR.

2.2 The Euler equation

The relevant state variables are capital and technology, (Kt, At). For given initial states, the

value of the optimal program is

V (K0, A0) = max
{Ct}∞t=0

U0 s.t. (6) and (2), (7)

i.e., the present value of expected utility along the optimal program. It is shown in Appendix

7.1 that the first-order condition for the problem is (subscripts denote derivatives)

uC(Ct, At) = VK(Kt, At), (8)

for any t ∈ [0,∞), and this allows writing consumption as a function of the state variables,

Ct = C(Kt, At). The Euler equation is

duC
uC

= (ρ− (rt − δ))dt− uCC(Ct, At)

uC(Ct, At)
CKσ

2Ktdt+
uCC(Ct, At)

uC(Ct, At)
CAη(At)dBt

+
uCA(Ct, At)

uC(Ct, At)
η(At)dBt +

uCC(Ct, At)

uC(Ct, At)
CKσKtdZt. (9)

Economically, this equation gives the pricing kernel in the economy. Hence, we may use

the Euler equation (9) to shed some light how the rate of return of the physical asset is

linked to any risk-free security (cf. Posch, 2011). For this purpose we apply the conditional

expectation and rewrite terms to arrive at

ρ− 1

dt
Et

[
duC
uC

]

︸ ︷︷ ︸
cost of forgone consumption

= rt − δ +
uCC(Ct, At)

uC(Ct, At)
CKσ

2Kt

︸ ︷︷ ︸
certainty equivalent rate of return

≡ rft . (10)

Optimal behavior implies that the cost of forgone consumption on the left-hand side must

equal the certainty equivalent rate of return rft , corresponding to the rate of the instanta-

neously risk-free asset on the right-hand side of the equation.10

10Note that −uCC(Ct, At)Ct/uC(Ct, At) measures the degree of relative risk aversion.
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Moreover, the Euler equation determines the optimal consumption path. In the following,

we restrict attention to the case u(Ct, At) = u(Ct). Using the inverse marginal utility

function, we obtain the path for consumption,

dCt =
u′(Ct)

u′′(Ct)
(ρ− (rt − δ))dt− σ2CKKtdt− 1

2
(C2

Aη(At)
2 + C2

Kσ
2K2

t )
u′′′(Ct)

u′′(Ct)
dt

+CAη(At)dBt + CKσKtdZt, (11)

where u′ > 0 and u′′ < 0 (strict concavity of preferences).

2.3 Equilibrium dynamics of the economy

Applying the logarithm on the variables of the stochastic differentials (6), (4), and (11) the

equilibrium dynamics of the economy may be summarized as instantaneous growth rates

d lnCt =

(
u′(Ct)(ρ− rt + δ)

u′′(Ct)Ct
− CKKtσ

2

Ct
− 1

2

C2
Aη(At)

2 + C2
Kσ

2K2
t

C2
t

u′′′(Ct)Ct + u′′(Ct)

u′′(Ct)

)
dt

+CAη(At)/CtdBt + CKσKt/CtdZt,

d lnYt =

(
µ(At)

At
+

(
Yt − Ct

Kt
− δ

)
KtYK
Yt

+ 1
2
σ2K

2
t YKK

Yt

)
dt− 1

2

Y 2
Aη(At)

2 + σ2Y 2
KK

2
t

Y 2
t

dt

+YAη(At)/YtdBt + σYKKt/YtdZt,

d lnKt = (rt − δ + wt/Kt − Ct/Kt − 1
2
σ2)dt+ σdZt.

If all variables Ct, Yt, and Kt along with TFP At were observed, estimation could be based

directly on this system and the equation (2). While consumption and income are standard

variables in most macro studies, capital and technology are notoriously problematic, due to

the risk of mismeasurement. This is where we propose using financial variables in a unified

macro-finance framework, instead. The idea is to use model-based equilibrium conditions to

identify latent state variables using financial data. Thus, suppose that an interest rate rt is

identified, either directly in the data, or in the form of an equilibrium no-arbitrage condition

such as rft in (10), along with Ct and Yt.
11 We consider systems of stochastic differential

equations that can be used for estimation in this case, based on time series for (Ct, Yt, rt),

by recasting the equilibrium dynamics in terms of this triple.

2.4 AK-Vasicek model with logarithmic preferences

In this section we consider an economy with technology given by Yt = AtKt, also known as

AK model (this includes the technology in Brunnermeier and Sannikov, 2014), and assume

11One caveat is that some variables are observed as an integral over an interval (a flow) rather than at a
point in time (a stock; Harvey and Stock, 1989). We approximate a flow variable, e.g., Yt∆ at time t by the

integral
∫ t

t−∆
Ysds. Observed growth rates of flow variables therefore correspond to lnYt − lnYt−∆.
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preferences of the type u(Ct) = lnCt. Though labor dynamics or more general classes of

preferences have been documented to be important determinants of business cycle dynamics

and asset pricing implications, our specification is interpreted as a parsimonious description

which allows us to study the macro-finance links within production economies and optimiz-

ing agents. It may be interpreted and used as a benchmark specification to illustrate the

issues and advantages of our approach by making use of an analytical solution. With these

assumptions, At = YK = rt and Kt = Yt/At = Yt/rt, so the two relevant state variables

(At, Kt) are expressed as known functions of the observable variables (Yt, rt). Because of

wt = YL = 0 the equilibrium dynamics can be summarized as

d lnCt =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt, (12a)

d lnYt =
(
µ(rt)/rt + rt − ρ− δ − 1

2
η(rt)

2/r2t − 1
2
σ2
)
dt

+η(rt)/rtdBt + σdZt, (12b)

drt = µ(rt)dt+ η(rt)dBt. (12c)

In general, the consumption function is non-homogeneous with respect to TFP At and capital

Kt (or wealth, here the output-TFP ratio).12 The functions µ(·) and η(·) are chosen such

that suitable boundedness conditions are met (cf. Posch, 2009). Recall that in the AK

framework, the interest rate (rental rate of capital) dynamics purely reflect TFP dynamics.

In the tradition of the finance literature, we illustrate the estimation of the model with the

interest rate governed by a Vasicek specification (henceforth the AK-Vasicek model).

The Vasicek (1977) mean-reverting specification for the rental rate of physical capital is

µ(rt) = κ(γ − rt) and η(rt) = η, where κ > 0 is the speed and γ the target rate of mean

reversion, and η the constant volatility. In this case, the equilibrium dynamics are

d lnCt =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt, (13a)

d lnYt =
(
κγ/rt − 1

2
η2/r2t + rt − κ− ρ− δ − 1

2
σ2
)
dt+ η/rtdBt + σdZt, (13b)

drt = κ(γ − rt)dt+ ηdBt. (13c)

Alternative Markov diffusion specifications of the interest rate process as in Äıt-Sahalia

(1996, p. 528) can be implemented and the system estimated along the lines developed

below, including the Cox, Ingersoll, and Ross (1985a) specification. The analytical solution

does not depend on this particular choice.

In this AK-Vasicek model, the relation between the risk-free rate and the rental rate of

12In our benchmark case optimal consumption is linear in the capital stock, Ct = ρKt (cf. Appendix 7.1).
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capital in (10) is given by13

rft = rt − δ − σ2. (14)

This result is quite intuitive if we recall that consumption is proportional to the capital

stock, such that CKKt = Ct. The term uCC(Ct, At)CKKt/uC(Ct, At) in (10) is the constant

parameter of relative risk aversion, for logarithmic preferences equal to unity.

Economically, equation (14) is the equilibrium asset pricing relationship, which demands

that the rate of return to any riskless financial asset rft equals capital rewards rt net of the

rate of depreciation δ and the risk premium associated with holding the physical asset. This

equation sheds light on the use of empirical data for estimating the macro-finance model: It

is typically easier to relate the rental rate of capital to some observable riskless rate, such

as the short rate (or 3-month interest rate) on some government bond, than to observe it

directly (or to observe capital or TFP).

3 Estimation

In this section, we describe how to estimate the equilibrium system (13) using macro and

financial data. First, we integrate the system to obtain an exact discrete-time analog in

terms of (observable) variables. Section 3.1 presents the resulting formulation of the model

for estimation purposes. Section 3.2 illustrates (i) how the reduced-form parameters can

be estimated by means of standard regression-based methods, and (ii) how the structural

parameters are obtained using minimum distance. Section 3.3 shows how structural parame-

ters may alternatively be estimated directly using the martingale estimating function (MEF)

approach and how this approach relates to generalized method of moments (GMM).

3.1 Discrete-time formulation

In order to accommodate the discrete-time nature of the data, we integrate over s ≥ t,

employing exact solutions whenever possible. In what follows, we treat the triple of variables

(Ct, Yt, r
f
t ) as being observable, though later on in an extension we consider a case with latent

interest rate dynamics. Specifically, we use the risk-free rate rather than a direct measure of

the rental rate of capital rt as financial data.
14 This (more realistic) assumption implies that

rt is linked to the data, but may also depend on parameters. Using the system of differential

13Note that δ would also capture a constant level of inflation. This assumption, however, neglects inflation
dynamics. There is a number of ways to overcome this, which is part of our research agenda. Since the focus
of the present paper is methodological, we leave a thorough examination for future research.

14We use daily data on the 3-month interest rate as a proxy for the risk-free rate (cf. Chapman, Long, and
Pearson, 1999), along with aggregate consumption and output at lower frequencies.
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equations (13) and the equilibrium asset-pricing condition (14), we obtain

ln(Cs/Ct)−
∫ s

t

rfvdv = −
(
ρ− 1

2
σ2
)
(s− t) + σ(Zs − Zt), (15a)

ln(Ys/Yt)−
∫ s

t

rfvdv = κγ

∫ s

t

1/(rfv + δ + σ2)dv − 1
2
η2
∫ s

t

1/(rfv + δ + σ2)2dv

−
(
κ+ ρ− 1

2
σ2
)
(s− t)

+

∫ s

t

η/(rfv + δ + σ2)dBv + σ(Zs − Zt), (15b)

rfs = e−κ(s−t)rft + (1− e−κ(s−t))(γ − δ − σ2)

+ηe−κ(s−t)

∫ s

t

eκ(v−t)dBv. (15c)

Hence, with s− t fixed at ∆, the system (15) has martingale increments given by

εC,t = σ(Zt − Zt−∆), (16a)

εY,t =

∫ t

t−∆

η/(rfv + δ + σ2)dBv + σ(Zt − Zt−∆), (16b)

εr,t = ηe−κ∆

∫ t

t−∆

eκ(v−(t−∆))dBv. (16c)

This system of three equations forms the basis of our empirical specifications. At the

same time, it illustrates the main ideas underlying our approach. First, our analysis delivers

the explicit functional forms of the relations among observables. Second, the availability of

interest rate data at higher frequency (say, daily) than consumption and production (monthly

or quarterly) allows precise approximation of the ordinary (although not the stochastic) inte-

grals involving the interest rate by summation over days. In our applications, we approximate

the integrals by Riemann sums of the type
∫ s

t
g(rfv )dv ≈ (s− t)

∑P
i=1 g(r

f
t+i(s−t)/P )/P , where

g(·) is a smooth function of rft+i(s−t)/P , the prevailing interest rate on a risk-free security on

day i in the period between t and s, and P is the number of days in the period.15 Third, the

structural parameters enter into the coefficients on the terms involving interest rates, thus

showing that financial data indeed may serve to identify parameters of interest.

If we directly observed rt = rft + δ + σ2, the system would in fact be linear in a set of

reduced-form parameters, which in turn are known functions of the structural parameters.

This intriguing result may be exploited also when rft is observed, instead, such that rt

depends on parameters: We may replace the observed time series rt with any reasonable

proxy r̂t from (14) using particular values δ = δ0 and σ = σ0. Technically, given the values

for δ and σ, the rental rate of capital is uniquely identified from the risk-free rate,

r̂t = rft + δ0 + σ2
0. (17)

15For notational convenience, we write P as a constant, but in our empirical approach we use the actual
number of days in the period (month or quarter).
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This step allows us to use off-the-shelf linear regression-based estimation methods in Section

3.2, but is not required for the GMM and MEF methods presented in Section 3.3. Because

σ0 and δ0 are unknown, this is causes problems for regression-based analysis.16

We have some choice in turning system (15) into an empirical specification. Initially,

we specify a system of three regression equations for equidistant macro data, i.e., we define

∆ ≡ s − t (we use ∆ = 1/12 for monthly data, ∆ = 1/4 for quarterly data). Given the

higher (say, daily) frequency of financial data, an alternative would be to start out with

separate estimation of the third equation, but the full system is likely closer to that required

for more complicated models (e.g., if consumption or income enters in the interest rate

equation). In any case, the high-frequency property of the interest rate data are exploited

in the approximation of the integrals as Riemann sums, rather than in using a separate

frequency in the estimation of the third equation.

3.2 The regression-based approaches

In this section we propose regression-based procedures to obtain parameter estimates. To

start with, we employ unrestricted ordinary least squares (OLS) to get reduced-form param-

eters, although this does not identify the structural parameters of interest. Next, we consider

cross-equation correlation, controlling for endogeneity through instrumental variables (IV),

and estimation of structural parameters by minimum distance.

3.2.1 Reduced-form model

With s− t fixed at ∆, and using the proxy series r̂t in (17), the system (15) is linear in a set

of reduced-form parameters and may be recast as

yj,t = xj,tβj + εj,t, j = C, Y, r, (18)

where the left-hand side variables are yC,t = ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv, yY,t = ln(Yt/Yt−∆)−∫ t

t−∆
rfvdv, and yr,t = rft . The right-hand side variables xt = (xC,t, xY,t, xr,t), with xC,t =

1, xY,t = (1,
∫ t

t−∆
1/r̂vdv,

∫ t

t−∆
1/r̂2vdv), and xr̂,t = (1, r̂t−∆). The reduced-form or linear

parameters, βC , βY = (βY,1, βY,2, βY,3)
⊤, and βr = (βr,1, βr,2)

⊤, are given in terms of the

16In cases where δ and σ are identified by the remaining system of equations, we may interpret fixed
values δ0 and σ0 in the construction of the auxiliary variable r̂t as starting values, then estimate the full set
of parameters of the model and update the values for δi = δ̂i−1 and σi = σ̂i−1 recursively for i = 1, 2, . . .
Alternatively, a nonlinear one-step regression-based approach could be implemented.
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structural parameters φ = (κ, γ, η, ρ, δ, σ)⊤ as

βC = −
(
ρ− 1

2
σ2
)
∆, (19a)

βY,1 = −
(
κ+ ρ− 1

2
σ2
)
∆,

βY,2 = κγ,
βY,3 = −1

2
η2,

(19b)

βr,1 = (1− e−κ∆)(γ − δ − σ2),
βr,2 = e−κ∆.

(19c)

Hence, the system (15) can be summarized in the form of simple regression equations, with

error terms given by

εC,t = σ(Zt − Zt−∆), (20a)

εY,t =

∫ t

t−∆

(η/r̂v)dBv + σ(Zt − Zt−∆), (20b)

εr,t = ηe−κ∆

∫ t

t−∆

eκ(v−(t−∆))dBv. (20c)

Using iterated expectations and the properties of stochastic integrals, the error terms are

clearly serially uncorrelated, i.e., E(εj,tεj,t−∆) = 0, j = C, Y, r. For a simple reduced-form

estimator, linearity in β suggests unrestricted equation-by-equation OLS,

β̂j = (x⊤j xj)
−1x⊤j yj, j = C, Y, r, (21)

where xj is the matrix with typical row xj,t and yj the vector with typical entry yj,t. The

structural parameter estimates, obtained by minimum distance applied to the reduced-form

estimates (21) using the link (19a)-(19c) (or by an asymptotically equivalent restricted non-

linear least squares regression), serve as useful benchmarks for assessing more elaborate struc-

tural approaches. We next discuss enhancing the basic OLS-based estimators by correction

for contemporaneous cross-equation correlation of errors and endogeneity of right-hand side

variables, then present the minimum distance approach yielding the structural parameter

estimates.

3.2.2 Cross-equation correlation

The estimators (21) allow for different variances of the error terms εj,t, j = C, Y, r, as they

are implemented separately by equation. However, it does not exploit any other property

of the errors. The present model structure implies both different right-hand side variables

(indeed, of different dimensions) across the equations, and cross-equation correlation of the

errors. In particular, from (15), the errors in (18) take the form (20a)-(20c), where, e.g.,

the term σ(Zt − Zt−∆) is common to both (20a) and (20b). Classical seemingly unrelated
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regressions (SUR) analysis is intended to exploit cross-equation correlation exactly in cases

where the right-hand side variables are not common across equations. This suggests that

a standard SUR correction of the reduced-form estimates should be more efficient than the

OLS estimates, and, hence, that structural parameter estimates backed out from the SUR

estimates (using minimum distance) should dominate those based on OLS.

Let ε̂ be the T × 3 matrix of OLS residuals, with typical row (ε̂C,t, ε̂Y,t, ε̂r,t), where T is

the number of time periods in the data set. The SUR estimate of the 3×3 contemporaneous

system variance-covariance matrix is Σ̂ = ε̂⊤ε̂/T (in particular, the residual variance esti-

mates along the diagonal coincide with the standard OLS assessments), and the FGLS-SUR

estimate of β = (βC , β
⊤
Y , β

⊤
r )

⊤ is

β̂SUR = (x⊤V̂ −1x)−1x⊤V̂ −1y, (22)

where y is the 3T -vector stacking the yj, x is the conformable matrix with the xj along

the block-diagonal, and V̂ −1 = Σ̂−1 ⊗ IT , with IT the identity matrix and ⊗ the Kronecker

product. The variance-covariance matrices of the SUR (and OLS) estimators are given in

Appendix 7.2.

3.2.3 Endogeneity

The regression approaches (OLS and SUR) do not control for possible endogeneity of right-

hand side variables in (15), and hence (18), which may be an issue in the DSGE model. In

particular, xY,t includes two integrals involving the evolution of the auxiliary variable in (17)

from t−∆ through t and so is correlated with both εr,t and εY,t. The standard regression-

based tool for handling endogeneity is instrumental variables (IV). Here, we consider first-

stage regressions of each of xY,t,2 =
∫ t

t−∆
1/r̂vdv and xY,t,3 =

∫ t

t−∆
1/r̂2vdv on their respective

lags xY,t−∆,2 and xY,t−∆,3 and an intercept. Next, in the computation (21) of β̂Y , fitted values

from the first stage regressions replace xY,t,2 and xY,t,3. Third, fitted residuals are calculated

using the new second stage estimate β̂Y but the original xY,t,2 and xY,t,3 (not their fitted

values from the first stage), and these residuals form the basis of the IV assessment of Σ̂.

Finally, an FGLS-SUR-IV step is carried out using this new Σ̂ in calculating β̂SUR in (22)

and again using the fitted values for xY,t,2 and xY,t,3. This combination of FGLS, SUR, and

IV (labeled FGLS-SUR-IV) appears to be novel.

3.2.4 Minimum distance

The structural parameters are φ = (κ, γ, η, ρ, δ, σ)⊤, a total of six. They are identified by

exploiting the way in which they enter into the reduced-form parameters β = β(φ). From

(19a)-(19c), we may this way identify ρ − 1
2
σ2, κ, γ, η, and δ + σ2, i.e., three structural
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parameters, and two independent combinations of the remaining three. Note that this iden-

tification is conditional on the chosen value δ0+σ
2
0 in the auxiliary variable r̂t that enters the

regressors in (18). When iterating, this value is updated, as exactly the parameter combina-

tion δ+σ2 is one of the five that are conditionally identified. Ultimately, this identifies these

five parameter functions. Instead of obtaining the five parameter functions, one can impose

restrictions on ρ ,δ or σ to identify all other parameters. It is also possible to separate ρ,

σ, and δ, and thus identify all six structural parameters, by exploiting the functional form

of the error variances (the variances of (20a)-(20c)). Indeed, including the variance of the

residual (20a) from the consumption equation as a separate moment along with the relations

(19a)-(19c) clearly identifies σ2 and thereby the full parameter vector φ, i.e., all six structural

parameters.

Why should we rely on first moments only if not all parameters are identified? In models

with, say, stochastic volatility or more elaborated preference specification, the error term of

the consumption equation becomes intractable (like the residual of the output equation). In

such case, the econometrician may exploit the martingale property only, without considering

second moments. Because we want to keep our analysis applicable to such specifications,

we focus how to estimate the (identified) parameters from first moments in the main text,

without going to higher moments. For comparison we show the results if we used the residual

variance of the consumption and the interest rate equation in a web appendix.

In the given setup, with either five or six structural parameters thus identified, we extract

estimates of them from the OLS, SUR, or FGLS-SUR-IV reduced-form parameter estimates

using a minimum distance approach. We carry out minimum distance estimation based on

three different unrestricted parameter sets ωi, i = 1, 2, 3, from the reduced-form regressions:

(1) the estimates of β in (19), i.e., the theoretical and empirical moments to match are

ω1(φ) = β(φ) and ω̂1 = β̂; (2) β along with the variance σ2∆ of the consumption equation

residual in (20a), so that ω2(φ) = (ω1(φ)
⊤, σ2∆)⊤ and ω̂2 = (ω̂⊤

1 , Σ̂CC)
⊤, with Σ̂CC the

upper left entry in the residual covariance matrix Σ̂; (3) β along with the variances of the

consumption and interest rate residuals (20a) and (20c), ω3(φ) = (ω2(φ)
⊤, 1

2
η2(1−e−2κ∆)/κ)⊤

and ω̂3 = (ω̂⊤
2 , Σ̂rr)

⊤. In each of the three cases, we solve the problem

φ̂ = argmin
φ

(ωi(φ)− ω̂i)
⊤ Ω̂−1

i (ωi(φ)− ω̂i) .
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Here, the relevant metrics are given by the precisions of the reduced form estimates,

Ω̂−1
1 =




Σ̂CCx⊤CxC Σ̂CY x⊤CxY Σ̂Crx⊤Cxr
Σ̂Y Cx⊤Y xC Σ̂Y Y x⊤Y xY Σ̂Y rx⊤Y xr
Σ̂rCx⊤r xC Σ̂rY x⊤r xY Σ̂rrx⊤r xr


 ,

Ω̂−1
2 =

(
Ω̂−1

1 06×1

01×6

(
2Σ̂2

CC

)−1

)
, Ω̂3 =

(
Ω̂−1

2 07×1

01×7

(
2Σ̂2

rr

)−1

)
,

with Σ̂ij the (i, j)’th entry in Σ̂−1.

The indicated matrix Ω̂−1
1 is for the case where the reduced form estimates β̂ are obtained

using SUR, i.e., Ω̂1 = V̂SUR. If β̂ is instead obtained by OLS as in (21), then the correct

Ω̂1 = V̂OLS is given in Appendix 7.2. A naive OLS assessment of Ω̂−1
1 would have zero

off-diagonal blocks, and diagonal blocks Σ̂−1
jj x

⊤
j xj in the minimum distance approach. With

endogeneity correction, i.e., the reduced form estimates are obtained by FGLS-SUR-IV,

again the minimum distance approach requires a variance-covariance matrix, and this has

the same form as in the SUR case, but with the new Σ̂ from the FGLS-SUR-IV approach

and with fitted values for the relevant portions of x.

Estimators that are asymptotically equivalent to these minimum distance estimators are

alternatively obtained by restricted (nonlinear) regression, minimizing the OLS respectively

the SUR objective function under the relevant restrictions (19a)-(19c) on β. In particular, the

OLS objective is
∑

j=C,Y,r ε
⊤
j εj/Σ̂jj and the SUR objective

∑T
t=1 ε

⊤
t Σ̂

−1εt, where εj and εt are

residual vectors of dimension T and 3, respectively, with elements εj,t. If estimated residual

variances are used along with the relations (19a)-(19c) to identify structural parameters in

the minimum distance case, then an asymptotically equivalent estimator may be obtained

by iterating on structural parameters as they enter both εt and Σ = Σ(φ), used instead of

Σ̂ in the SUR objective function. This use of the Gaussian log-likelihood function amounts

to quasi maximum likelihood (QML) since clearly εY,t in (20b) is non-Gaussian.

3.3 GMM and the MEF approach

The issue remains whether all endogeneity issues in the structural DSGE model have been

fully corrected for by FGLS-SUR-IV (or the asymptotically equivalent nonlinear regression

methods). The lagged values of the relevant integrals involving the auxiliary variable r̂s,

t − 2∆ ≤ s ≤ t − ∆, may correlate with r̂t−∆, and hence with εY,t from (20b), although

presumably less than without lagging (this is the idea of the instrumentation). Any such

correlation between the error terms and the right-hand side variables (even when using

fitted values) indicates that part of the endogeneity issue remains. For a full solution and

a consistent and asymptotically efficient estimator, we turn to a computationally slightly
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more demanding procedure, the martingale estimating function (MEF) approach, exploiting

the martingale structure of the model. This important next step builds naturally on the

above regression-based approach. The latter has the advantage of permitting easy off-the-

shelf implementation, and provides useful benchmark estimates and starting values for the

optimal MEF estimator. A likelihood-based approach such as MEF, however, allows us to

estimate the parameters without the need of constructing the auxiliary variable r̂t in (17),

but directly using rft in the estimation.

Let φ denote the parameter vector of interest, whether the structural parameters, or sim-

ply β from the reduced form. Let mt = mt(φ) denote the N -vector of martingale increments

generated by the model, expressed in terms of data and parameters. Specifically, we let

mt = εt = (εC,t, εY,t, εr,t)
⊤ from (20a)-(20b), so N = 3. Clearly, mt is a martingale difference

sequence, and from system (15) we have that in terms of data and parameters

mt =




ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆

ln(Yt/Yt−∆)−
∫ t

t−∆
rfvdv +

(
κ+ ρ− 1

2
σ2
)
∆− κγ

∫ t

t−∆
1/(rfv + δ + σ2)dv

+1
2
η2
∫ t

t−∆
1/(rfv + δ + σ2)2dv

rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆


 ,

(23)

where the integrals are approximated by Riemann sums over days between t−∆ and t. More

general versions of the model give rise to other mt, some with higher dimension N .

3.3.1 From GMM to MEF

The MEF method differs slightly from the generalized method of moments (GMM) of Hansen

(1982). It is at least as efficient as GMM – indeed, strictly more efficient except in the special

case where the two estimators coincide. It is instructive to start with the GMM, then show

how to modify this appropriately, to see how the MEF method comes about. Since mt is a

martingale difference sequence, we have Et−∆ (mt) = 0. The standard GMM approach is to

consider instruments, say zt, belonging to the information set and hence known at time t−∆,

so that Et−∆ (zt ⊗mt) = 0, where ⊗ is the Kronecker product. For example, the instruments

could be lagged right-hand side variables, zt = (1,
∫ t−∆

t−2∆
1/(rfv + δ + σ2)dv,

∫ t−∆

t−2∆
1/(rfv + δ +

σ)2dv, rft−2∆)
⊤, since these are all in the information set at t−∆. In particular, it presents

no new issue, neither for GMM nor MEF, that the instrumental variables depend not only

on data, but also on parameters, zt = zt(φ). Defining ht = ht(φ) = zt ⊗mt, we have that ht

is of dimension dim h = dim z ×N , or 12 in the AK-Vasicek model with logarithmic utility.

To construct the GMM estimator, let

HT =
1

T

T∑

t=1

ht (24)
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be the sample average, evidently a martingale at the true value of the parameter φ. Since

the unconditional expectation E(ht) = 0, it would be natural to choose the estimator for φ

so as to equate the sample analogue HT of E(ht) to zero. Typically, dimh > dimφ, so it is

not possible to solve the equation HT = 0 exactly. Instead, the GMM estimator is defined as

the minimizer of the squared norm HT (φ)
⊤WHT (φ), where W is a weight matrix. Optimal

GMM is obtained by using the identity matrix Idim h forW in a first step minimization, then

using the resulting estimator to calculate a consistent estimate of var(HT )
−1 that is used for

W in the second step minimization. Writing φ̂0 for the first step estimator using W = Idim h,

an example could be var(HT )
−1 = (

∑
t ht(φ̂0)ht(φ̂0)

⊤)−1. Sometimes, a Newey and West

(1987) correction is used, for robustness against serial correlation, but it is unnecessary

under the null that mt and hence ht is a martingale difference sequence.

The important features of GMM that leave room for improvement and hence the MEF

approach are now evident: First, the instruments zt enter in the form of a vector, whereas

MEF uses a matrix. Secondly, the dimension ofHT is the same as or greater than the number

of parameters, whereas MEF specifically uses the same number of estimating equations

and parameters. In short, the optimal estimating equations are based on matrix-valued

rather than vector-valued instruments, and over-identifying restrictions (dimh > dimφ) are

unnecessary for efficiency.

To develop these ideas, note that the first order conditions for the minimization in GMM

are
∂HT (φ)

⊤

∂φ
WHT (φ) = 0, (25)

that is, the same number of zero conditions as number of parameters in φ, as it should be. An

estimator that is asymptotically equivalent to GMM may be obtained by solving the dimφ

equation G
∑T

t=1 ht(φ) = 0, where G is an initial consistent estimate of the dimφ × dim h

matrix ∂HT (φ)
⊤/∂φ ·W in (25). Thus, G could be based on the first step GMM estimator,

just like W , i.e., the system is

(
∑

t

∂ht
∂φ

(φ̂0)

)⊤(∑

t

ht(φ̂0)ht(φ̂0)
⊤

)−1∑

t

ht(φ) = 0,

where φ only appears in the last factor. The equations are solved by treating G(φ̂0) as fixed

and finding φ that sets (25) exactly equal to zero, and the result is asymptotically equivalent

to optimal GMM.

It is now apparent that a more flexible estimation approach obtains by not just solving the

equations with a fixed dimφ×dimhmatrixG from the first step (the approach asymptotically

equivalent to optimal GMM), but instead allowing a separate dim φ×dimh matrix each time
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period, say, gt. This is the central idea of the MEF approach. Thus, there are again dimφ

equations, but they now take the more general form

T∑

t=1

gt(φ̂0)ht(φ) = 0, (26)

instead of G(φ̂0)
∑T

t=1 ht(φ) = 0. Clearly, this is a zero-mean martingale for any choice of

weight matrices gt, which may depend on data through t − ∆. They may also depend on

parameters, but here we use initial consistent estimates, i.e., all gt may be calculated after

the first step estimation. The question is how to choose the gt optimally. If they indeed

vary across time, the resulting estimator differs from optimal GMM. The special case gt ≡ G

returns the optimal GMM estimator. The relevant theory for optimal estimators is based

on Godambe and Heyde (1987), and the dynamic case (optimal choice of time-varying gt) is

treated in Christensen and Sørensen (2008).

In fact, it is unnecessary to expand mt to ht by introducing the instruments zt in ht =

zt ⊗mt, since if mt is used instead of ht and in fact zt is needed in the optimal estimator,

then zt will just be part of the optimally chosen gt. Thus, we leave the problem involving zt

and define the martingale estimating function

MT =
T∑

t=1

wtmt, (27)

clearly a zero-mean martingale for any choice of weight matrices wt, which may depend on

data through t − ∆. A martingale estimating function (or MEF) is given by specifying wt

as a series of d × N matrices, where d = dimφ. At the true parameter value, E(MT ) = 0,

and φ is estimated by solving the martingale estimating equation

MT (φ) = 0. (28)

The optimal weights are given by

wt = ψ⊤
t (Ψt)

−1, (29)

where Ψt is the conditional variance of the vector martingale increment,

Ψt = V art−∆(mt) = Et−∆(mtm
⊤
t ), (30)

and ψt the conditional mean of its parameter derivative

ψt = Et−∆(∂mt/∂φ
⊤). (31)
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The conditioning on information available through t−∆ requires integrating out with respect

to the evolution of the interest rate appearing in the integrals from t−∆ through t in (23).

This can be computationally more demanding than the regression-based approaches, but

it does circumvent the endogeneity problem in the DSGE model. The choice of weights

(29) gives the optimal martingale estimating function, across choice of weights wt. The

optimal weights do depend on parameters, i.e., the martingale estimate φ̂ solves a system

of the form
∑

twt(φ)mt(φ) = 0, where the solution accounts for the parameter dependence

of both wt and mt. Alternatively, an asymptotically equivalent estimator may be obtained

by using weights evaluated at initial consistent estimates φ̂0, e.g., from GMM. In this case,

φ̂ is calculated as the solution with respect to φ of the system
∑

twt(φ̂0)mt(φ) = 0. In

both cases, the estimator is consistent (in particular, the endogeneity issue is resolved) and

asymptotically normal, √
T (φ̂− φ) → N (0, VMEF ), (32)

with asymptotic variance-covariance matrix given by

VMEF =
(
E(ψ⊤

t (Ψt)
−1ψt)

)−1
, (33)

consistently estimated by the inverse sample average V̂MEF =
(
T−1

∑T
t=1 ψ

⊤
t (Ψt)

−1ψt

)−1
. If

φ = β, then ψt is block-diagonal with xj,t in the j’th diagonal block, j = C, Y, r. When φ

consists of the structural parameters, ψt is this block-diagonal matrix post-multiplied by the

Jacobian of the transformation ω1(φ) from structural parameters to β. In the AK-Vasicek

model with log utility, this Jacobian has rank six, so all six structural parameters may be

identified when N = 3.

3.3.2 Comparison of GMM and MEF

Before applying the MEF method, let us briefly compare MEF and optimal GMM. Obviously,

the GMM estimator is consistent, and the consistent estimate of the asymptotic variance

takes the form V̂GMM =
(
(T−1

∑T
t=1 ∂ht/∂φ

⊤)⊤(T−1
∑T

t=1 hth
⊤
t )

−1(T−1
∑T

t=1 ∂ht/∂φ
⊤)
)−1

.

In particular, except in the special case where the two estimators coincide, the MEF estimator

is strictly more efficient than optimal GMM,

V̂MEF < V̂GMM ,

in the partial order of positive semi-definite matrices. This is essentially a generalized

Cauchy-Schwartz inequality, once it is recognized that ht may be used for mt in the MEF

case (the resulting MEF estimators based on ht and mt coincide, as the weights if neces-

sary incorporate zt, following the above discussion). Specifically, we always have VGMM =
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(
E(∂ht/∂φ

⊤)⊤var(ht)
−1E(∂ht/∂φ

⊤)
)−1

, and by iterated expectations and using ht for mt

we have ψt = Et−∆(∂ht/∂φ
⊤), Ψt = Et−∆(hth

⊤
t ), and therefore E(∂ht/∂φ

⊤) = E(ψt),

var(ht) = E(Ψt). It follows that the efficiency comparison is simply

VMEF =
(
E(ψ⊤

t (Ψt)
−1ψt)

)−1
<
(
E(ψt)

⊤E(Ψt)
−1E(ψt)

)−1
= VGMM .

The asymptotic variance of the MEF estimator is smaller than that of GMM because the

expectation is taken after multiplying the relevant matrices, instead of before, as in GMM.

When does the MEF method reduce to GMM? This requires that the researcher has

started out with either (i) moments not given by the N -vector of martingale differences mt,

and also not by ht = zt⊗mt, for arbitrary zt in the information set at t−∆, but instead given

by the dimφ vector ψ⊤
t (Ψt)

−1mt(φ); or, (ii), moments in fact given by the N -vector mt, in a

situation with N < dim φ, and where an expansion of moment conditions from the original

N -vector mt to ht = zt ⊗mt happens to deliver the dimφ vector ht = ψ⊤
t (Ψt)

−1mt(φ). In

addition, the vector zt that makes this happen must be in the information set at t − ∆.

Since the conditional mean derivative ψt from (31) and conditional variance Ψt from (30)

typically depend on parameters, this case rarely occurs for standard instrumental variables

zt in the data set. Firstly, it would require that dimφ = dim z · N . Secondly, writing

ht = zt ⊗mt = (zt ⊗ Idim z)mt, it also requires that ψ⊤
t (Ψt)

−1 has special structure, i.e., it is

represented in the Kronecker product form zt ⊗ Idim z, which is usually not the case.

In all other cases, the MEF and GMM estimators differ, with VMEF < VGMM , i.e., the

martingale estimator is asymptotically strictly more efficient than GMM. In our specific

DSGE applications, we see below that ψ⊤
t (Ψt)

−1 is complicated, certainly not on Kronecker

product form (case (ii)), and it is also highly unlikely that a researcher would a priori

start with moment conditions ψ⊤
t (Ψt)

−1mt(φ) rather than mt(φ) (case (i) above), except if

purposefully applying the MEF rule of always transforming from any arbitrary moment mt

(univariate or multivariate) to ψ⊤
t (Ψt)

−1mt(φ) at the outset. In this sense, MEF could be

considered GMM with optimal (typically parameter-dependent) instruments, namely, using

ψ⊤
t (Ψt)

−1 instead of the standard but arbitrary zt ⊗ Idim z.

3.3.3 MEF with three moment restrictions

For illustration, we report the functional form of the martingale estimating function for the

AK-Vasicek model with logarithmic utility. This should be compared to the basic optimal

GMM estimator, e.g., the two-step estimator based on the four-dimensional vector of instru-

mental variables from the previous section. Let mt = εt = (εC,t, εY,t, εr,t)
⊤ be the 3-vector of

error terms (16), clearly a martingale difference sequence. This may be expressed in terms

of data and parameters as in (23), where the integrals are approximated by summation over
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days between t − ∆ and t. This allows computing mt at trial parameter values. To con-

struct the MEF (28), we need weights wt in (29), which depend on the conditional mean

of the parameter derivatives, ψt, and the conditional variance, Ψt, of mt. Here, we have

the conditional variances Ψt,11 = σ2∆, Ψt,22 = η2Et−∆(
∫ t

t−∆
1/(rfv + δ + σ2)2dv) + σ2∆, and

Ψt,33 = η2(1−e−2κ∆)/(2κ). Similarly, the conditional covariances are Ψt,12 = σ2∆, Ψt,13 = 0,

and Ψt,23 = η2e−κ∆Et−∆

(
(
∫ t

t−∆
1/(rfv + δ + σ2)dBv)(

∫ t

t−∆
eκ(v−(t−∆))dBv)

)
. Since analytical

expressions are not available, we use Euler approximations for Ψt,22 and Ψt,23,

Ψt =




σ2∆ σ2∆ 0

σ2∆ σ2∆+ η2∆/(rft−∆ + δ + σ2)2 η2e−κ∆∆/(rft−∆ + δ + σ2)

0 η2e−κ∆∆/(rft−∆ + δ + σ2) 1
2
η2(1− e−2κ∆)/κ


 . (34)

Note that the consistency and the expression for the asymptotic variance are unaffected

by our approximations because they enter only in the weights (29). Using martingale in-

crements (23), we get the derivatives (∂mt/∂φ
⊤)⊤ with respect to the parameter vector

φ = (κ, γ, η, ρ, δ, σ)⊤,



0 ∆− γ
∫ t

t−∆
1/(rfv + δ + σ2)dv −∆e−κ∆γ +∆e−κ∆rft−∆

0 −κ
∫ t

t−∆
1/(rfv + δ + σ2)dv −(1 − e−κ∆)

0 η
∫ t

t−∆
1/(rfv + δ + σ2)2dv 0

∆ ∆ 0

0 κγ
∫ t

t−∆
1/(rfv + δ + σ2)2dv − η2

∫ t

t−∆
1/(rfv + δ + σ2)3dv (1− e−κ∆)

−σ∆ −σ∆+ 2σκγ
∫ t

t−∆
1/(rfb + δ + σ2)2dv

−2ση2
∫ t

t−∆
1/(rfb + δ + σ2)3dv

2σ(1− e−κ∆)




.

(35)

Now apply conditional expectation to get ψt = Et−∆(∂mt/∂φ
⊤), interchange the order of

integration in (35), and use the deterministic Taylor expansion (e.g., Äıt-Sahalia, 2008),

which reads

E(g(rs)|ru) =
k∑

i=0

∆i

i!
Aig(ru) +O(∆k+1), s ≥ u (36)

where A is the infinitesimal generator in the Vasicek model, Ag(x) = κ(γ−x)g′(x)+ 1
2
η2g′′(x).

The function g(·), for example g(x) = 1/x in ψt,21, must be sufficiently smooth. For example,

a first-order Taylor expansion, k = 1, yields
∫ t

t−∆

Et−∆(1/rv)dv =

∫ t

t−∆

Et−∆(1/rv)dv

≈
∫ t

t−∆

(
1/rt−∆ + (v − (t−∆))

(
−κ(γ − rt−∆)/r

2
t−∆ + η2/r3t−∆

))
dv

= ∆/rt−∆ − (t−∆)
(
−κ(γ − rt−∆)/r

2
t−∆ + η2/r3t−∆

)
∆

+1
2
(t2 − (t−∆)2)

(
−κ(γ − rt−∆)/r

2
t−∆ + η2/r3t−∆

)

= ∆/rt−∆ −
(
κ(γ − rt−∆)/r

2
t−∆ − η2/r3t−∆

)
1
2
∆2,
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in which rv = rfv +δ+σ
2. Thus expanding all terms involving integrals in (35), the transpose

of the conditional mean of parameter derivatives ψ⊤
t reads




0 ∆− γ
(
∆/rt−∆ −

(
κ(γ − rt−∆)/r

2
t−∆ − η2/r3t−∆

)
1
2
∆2
)

∆e−κ∆(rft−∆ − γ)
0 −κ

(
∆/rt−∆ −

(
κ(γ − rt−∆)/r

2
t−∆ − η2/r3t−∆

)
1
2
∆2
)

−(1− e−κ∆)
0 η

(
∆/r2t−∆ −

(
2κ(γ − rt−∆)/r

3
t−∆ − 3η2/r4t−∆

)
1
2
∆2
)

0
∆ ∆ 0

0
κγ
(
∆/r2t−∆ −

(
2κ(γ − rt−∆)/r

3
t−∆ − 3η2/r4t−∆

)
1
2
∆2
)

−η2
(
∆/r3t−∆ −

(
3κ(γ − rt−∆)/r

4
t−∆ − 6η2/r5t−∆

)
1
2
∆2
) (1− e−κ∆)

−σ∆ −σ∆+ 2σκγ
(
∆/r2t−∆ −

(
2κ(γ − rt−∆)/r

3
t−∆ − 3η2/r4t−∆

)
1
2
∆2
)

−2ση2
(
∆/r3t−∆ −

(
3κ(γ − rt−∆)/r

4
t−∆ − 6η2/r5t−∆

)
1
2
∆2
) 2σ(1− e−κ∆)




,

(37)

in which, again, rt−∆ = rft−∆ + δ + σ2. This completes the construction of the martingale

estimating function MT =
∑

t ψ
⊤
t (Ψt)

−1mt. The condition MT (φ) = 0 involves the same

number of equations and unknowns, and is solved exactly for the optimal estimator φ̂. The

asymptotic distribution is given by (32)-(33).

3.3.4 MEF extensions: Latent variables and mixed frequency

So far, we have considered the case where all variables in the system are observable, albeit

using some mixed-frequency properties of the data. The MEF approach can be generalized

to the empirically relevant cases of latent variables (e.g., unobserved real interest rates,

stochastic volatility, stochastic discount rates, etc.) and mixed-frequency estimation with a

different frequency for each series. To illustrate, we consider two representative cases, set in

the context of the AK-Vasicek model: (i) The daily interest rate rt is latent and cannot be

backed out from data – there is no observed series proxying for this variable; (ii) Output Yt

is observed at a lower (say, quarterly) frequency than consumption Ct (say, monthly).

Case (i) serves to illustrate our approach to missing data series. For example, expected

inflation and hence the real rate of interest may be treated as missing. An interesting feature

of the approach is that we may infer the latent series and conduct a model specification check.

Case (ii) reinforces our use of data sampled at mixed frequencies. For example, output may

be proxied by industrial production at the monthly frequency (see below), but it may be of

interest to compare with results using actual output, available only quarterly. In the latter

case, consumption need not be aggregated to quarterly frequency.

For the latent variable generalization, Case (i), note that the basis of the MEF approach

with complete data is that the condition E (MT ) = 0 is satisfied at the true parameter

value, where MT =
∑T

t=1 wtmt. In the incomplete data setting, define Ft as the information

set generated by {Cs, Ys}ts=1 (but not the missing interest rates). By E (MT ) = 0 and

iterated expectations, we have E (
∑

twtE (mt|Ft−∆)) = 0, for weights wt depending only on
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information through t−∆. Thus, in the estimation, we may replace selected additive terms

in the moments mt by their conditional expectations given Ft−∆. This allows replacing the

integrals involving the daily interest rate by conditional expectations given monthly interest

rate proxies, based on the information set.

For our application to the stochastic AK-Vasicek model, the procedure allows deriving

moments for estimation, say, m∗
t = E (mt|Ft−∆), given by




ln(Ct/Ct−∆)− E
(∫ t

t−∆
rvdv|r∗t−∆

)
+
(
ρ+ δ + 1

2
σ2
)
∆

ln(Yt/Yt−∆) +
(
κ+ ρ+ 1

2
σ2 + δ

)
∆− E

(∫ t

t−∆
rvdv + κγ

∫ t

t−∆
1/rvdv − 1

2
η2
∫ t

t−∆
1/r2vdv|r∗t−∆

)

r∗t − (1− e−κ∆)γ − e−κ∆r∗t−∆


 ,

(38)

where r∗t−∆ is an interest rate proxy based on consumption and income data through t−∆.

Here, ∆ = 1/4 is used in the empirical work. From earlier, the model implies Kt = Yt/rt

and Ct = ρKt, so a model-consistent proxy at the macro frequency is r∗t = ρYt/Ct in which

Yt/Ct is approximated by the ratio of quarterly observed income and consumption data.

One possibility for implementation of the conditional expectations of the integrals in (38),

i.e., integrating out the latent interest rate process rv, is simulation. We refer to the resulting

procedure as Simulated MEF, or SMEF. Thus, each integral involves drawing a path for rv

from drv = κ(γ − rv)dv + ηdBv using an Euler scheme from v = t−∆ to t, starting at the

proxy value for r∗t−∆, and the expectation is formed by averaging over paths. The interest

rate (or latent state variable) is similarly integrated out of wt = ψ⊤
t (Ψt)

−1, or, in the specific

case, rt−∆ is simply replaced by its proxy r∗t−∆ in the expressions (37) and (34) for ψ⊤
t and

Ψt. In the iterative solution of the estimating equation
∑

t ψ
⊤
t (Ψt)

−1m∗
t = 0, the parameter

dependence (in our model, through ρ) of the implied state variables is accounted for.

The SMEF approach applies generally to models involving latent variables. For example,

in the stochastic volatility case, the relevant state variable (volatility) would be implied out

of the available data for given trial parameter values and at the given sampling frequency,

then integrated out between sampling periods using model-consistent simulation.

The mixed frequency Case (ii) where output is only available quarterly is slightly different.

Here, a complete (monthly) output proxy series Y ∗
t is simply constructed recursively by

letting Y ∗
t = Yt in the (quarterly) periods where output data are available, and

Y ∗
t = exp

(
ln(Y ∗

t−∆) +

∫ t

t−∆

rvdv −
(
κ+ ρ+ δ + 1

2
σ2
)
∆+ κγ

∫ t

t−∆

1/rvdv − 1
2
η2
∫ t

t−∆

1/r2vdv

)

in the intra-quarter periods when output is missing. Here, rv = rfv + δ + σ2, using observed

daily rfv . This is model consistent prediction, not simulation. In particular, the resulting
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proxy series Y ∗
t depends on the parameters. The proxy series is now substituted for Yt in the

original estimating equation
∑

twtmt = 0. We refer to this procedure as mixed-frequency

MEF, or MF-MEF. In particular, when solving for the parameter estimates, the dependence

of the constructed output proxy series on trial parameter values is again accounted for.

Both generalized approaches, SMEF and MF-MEF, are akin to filtering. Thus, in the

presence of latent variables, Case (i), SMEF recasts mt in the estimating equation in terms

of a set of conditional expectations or filtered predictions, given the information actually

available. For mixed-frequency estimation, Case (ii), MF-MEF replaces missing data by

conditional predictions given the actual observations. In both cases, standard errors may be

calculated using the bootstrap.

4 Simulation Study

To assess the estimation methods from the previous section we run a simulation study. We

first detail the set-up of our analysis. As in the previous section, our illustration is based on

the AK-Vasicek model with logarithmic utility. We report results on the sensitivity to DGP

values and further results in an accompanying web appendix (cf. Appendix B).

4.1 Set-up

We simulate 25 years of both monthly and quarterly data from the model. We use simple

Euler approximations to the differential equations in (13). The step length of the Brownian

terms is taken as 1/3000. This corresponds to dividing each of the 12 months of the year

into 25 days, each in turn consisting of 10 periods.

There are two further computational issues when simulating from the model: Obtaining

the integrals involving the interest rate and initialization of the simulations. Concerning the

first issue, we obtain the monthly integrals over the interest rate, denoted with
∫ t

t−∆
g(rv)dv

where ∆ = 1/12 as in Section 3.1, by taking the average of the functions g(rv) over the 25

simulated days per month. For example,
∫ t

t−∆
1/(rfv + δ+ σ2)dv for the monthly simulations

is approximated by (
∑25

i=1 1/(rt−∆+i∆/25 + δ + σ2))∆/25. For the quarterly simulated data

we use a similar approximation, but now over the 75 days in the Euler approximation.

Concerning the second issue, we normalize initial output to unity and initialize the other

variables consistently with theory: ln(Y0) = 0, r0 = γ, and ln(C0) = ln(ρ× Y0/r0).

We generate 1,000 data sets and estimate the parameters according to the approaches

of Section 3. In particular, we report the parameter estimates for the OLS, FGLS-SUR-IV,

GMM, and MEF methods. In the first two cases, we use the minimum distance approach

to get the structural parameters from the reduced form estimates. We choose the data
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generating process (DGP) parameter values in a way roughly corresponding to empirical

estimates obtained in Section 5.2 below. In particular, we use κ = 0.2, γ = 0.1, η = 0.01,

ρ = 0.03, δ = 0.05, and σ = 0.02 (see column DGP in Table 1). In the web appendix, we

report the sensitivity of our estimation methods to different DGP values (cf. Table A1).

4.2 Simulation results: Monthly and quarterly data

[insert Table 1]

Table 1 provides the results of the simulation study. In the first column we list the parameter

values as they are used in the data generating process (DGP), in columns 2-5 the estimates

obtained from the simulated monthly data, and in columns 6-9 the estimates from the

quarterly data. For our four estimation methods we provide the median estimate of each

parameter, and below the interquartile range of the 1,000 estimates. Not all six structural

parameters are identified in the regression-based estimation methods, when not exploiting

second moments (in particular, the residual variances of εC,t and εr,t). In fact, five parameter

combinations are identified, so one possibility is to fix one parameter at the outset and

estimate the remaining five. There is some choice regarding which parameter to set, since

the two combinations ρ − 1
2
σ2 and δ + σ2 are identified, i.e., either ρ, δ, or σ2 could be

restricted. We choose to set δ to the DGP value of 0.05, which economically is interpreted

as depreciation of physical capital of 5 percent per year, in the regression-based approaches.

The same identification issue occurs for the GMM when the standard lagged right-hand side

variables are used as instruments and no higher order moments are used. Also here we set

δ to the DGP value of 0.05.

Overall, while simple OLS, ignoring the estimation problems described above, has some

trouble identifying the structural parameters, the FGLS-SUR-IV, GMM, and MEF ap-

proaches produce estimates of γ, η and ρ that are remarkably close to the values in the DGP.

Without exploiting further moments, σ seems to be only weakly identified using GMM, as

reflected by the large inter-quartile range, or generates largely biased point estimates in

the regression-based approaches. In the MEF approach, however, σ is already identified

from considering only three moment conditions. Here, the identification works through the

(optimally chosen) weight matrix and the conditional mean of parameter derivatives of the

martingale increments. Similar results hold for both monthly and quarterly data.

The mean-reversion parameter κ of the Vasicek specification is more difficult to estimate:

Here, a value 0.2 is used in the DGP, while the median estimates are in the range from

0.30 to 0.35 using monthly data, and only slightly better in quarterly data. This upward

bias in the mean-reversion parameter estimate is well established (see Tang and Chen, 2009;
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Wang, Phillips, and Yu, 2011). In particular, for values of κ close to zero, i.e., a near unit

root situation typical of many financial time series, a bias correction may be preferable (Yu,

2012). We find a similar magnitude of the bias across the regression-based, GMM, and MEF

approaches, and for different sets of DGP values (cf. Table A1). This finite-sample bias,

however, does not seem to translate to other parameters (cf. Figure 1). Moreover, given the

relatively wide inter-quartile range, the κ estimates are still within reasonable distance.

[insert Figure 1]

In Figure 1 we provide the histograms of the 1,000 estimates that we obtain for the

parameters using the MEF approach on both monthly data (Panel A) and quarterly data

(Panel B). The figure confirms the findings from Table 1: The parameters γ, η, ρ, δ and σ

are centered close to the DGP values. In addition, it becomes clear that the mode of the

histograms for κ in fact is quite close to the DGP values, but the estimates are skewed, thus

causing the difference between median estimates and DGP values reported in Table 1.

We also implement minimum distance (cf. Section 3.2.4), using the residual variance

from the consumption (not reported), or both the consumption and interest rate equation

as additional moments (cf. Table A2 in the web appendix), along with β in the regression-

based approaches, allowing better identification of σ for monthly data (columns 2 and 3)

respectively quarterly data (columns 6 and 7). A similar idea for the GMM and MEF

methods is to include further moment restrictions in the martingale estimating equation

(28). The results based on five moment restrictions (instead of three moment restrictions),

with the conditional moments derived in Appendix 7.3, are reported in Table A2, columns

4 and 5 for monthly data respectively 8 and 9 for quarterly data. Including more moments

indeed yields (better) identification of the six parameters. The relatively poor performance

of the regression-based approaches clearly relates to the restriction on first moments. In

cases where the econometrician is able to use second moments, it is advisable to so.

Taken together, the simulation study indicates that the GMM and MEF approaches are

successful in recovering parameter estimates from the data. The regression-based methods

exhibit reasonable performance, but only after accounting for potential estimation problems

due to cross-equation correlation and endogeneity. In empirical work, the regression-based

approaches would also require iteration over the proxy r̂t in (17). In our simulation study,

the values for δ0 and σ0 are set to their corresponding DGP values δ and σ.17

4.3 Simulation results: Latent short rate and mixed frequency

[insert Table 2]

17We examine the sensitivity of OLS and FGLS-SUR-IV parameter estimates to δ0 and σ0 in Table A3.
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In this section we present the simulation results for two possible MEF extensions, the missing

data points in the mixed-frequency approach (MF-MEF) and in the case of latent-variables

using simulation-based approach (SMEF). Table 2 provides the results for the simulation

study of the AK-Vasicek model. In the first column we list the parameter values as they are

used in the data generating process (DGP), in column 3 the SMEF estimates obtained on

simulated monthly data, in column 5 the SMEF estimates for the simulated quarterly data,

and in column 6 the MF-MEF estimates for the mixed-frequency data. For comparison, we

also replicate the MEF results from Table 1 in columns 2 and 4, respectively, using monthly

and quarterly data. As before, we provide the median estimate of each parameter, and below

the interquartile range of the 1,000 estimates.

For the latent variable extension, Case (i), we compare SMEF (columns 3 and 5) with

MEF estimates (columns 2 and 4). We find that the latent variable case is as good as the

observed short rate process. At both the monthly and the quarterly observation frequency,

the point estimates and interquartile ranges are estimated remarkably close to DGP values

and are comparable with the MEF figures with slightly smaller interquartile ranges in the

SMEF approach for ρ and σ. Of course, these findings hold true only if the data were

simulated from the correct model. This fact allows us to run model-specification checks on

the empirical data at hand. The simulated short rate process can actually be compared with

some observed proxies (see also the discussion in Section 5.3).

For the extension to mixed-frequency data, Case (ii), we compare MF-MEF (column 6)

with MEF estimates (columns 2 and 4). As one would expect, given the correct specification,

for the case when output is replaced by model consistent predictions at intra-quarter periods

the point estimates are remarkably close to the monthly estimates. Comparing the MF-MEF

results to MEF, where consumption and output is observed at the quarterly frequency, we

find that we gain better identification in σ, reflected by the smaller interquartile range.

[insert Figure 2]

In Figure 2 we provide the histograms of the 1,000 estimates that we obtain for the pa-

rameters using both the SMEF for monthly data and the MF-MEF approaches. Comparing

the histograms of SMEF (Panel A) to monthly MEF in Figure 1 (also Panel A) illustrates

that ρ and σ are better identified in SMEF, which also is reflected by smaller interquar-

tile ranges above, while the histogram is slightly more narrow for δ in the MEF approach.

Similarly, comparing the histograms of MF-MEF (Panel B) to monthly and quarterly MEF,

respectively, in Figure 1 (Panels A and B) shows that there is a small efficiency loss with

respect to monthly data, but better identification of parameters is obtained relative to the

results when estimates are obtained solely from quarterly data.
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Overall, both extensions work and are potentially more important for the case when we

apply the method to empirical data by the same reasons that motivated our extensions.

4.4 Robustness: Time invariance and high-frequency data

In this section we present two robustness simulation results which are particularly relevant

for the estimation of continuous-time models. We want to provide answers to the following

two questions: (i) Are the estimates time invariant? In theory, the continuous-time model is

time invariant. However, different continuous-time processes may look identical if sampled

at discrete points, which sometimes is referred to as the aliasing problem. This phenomenon

may prevent unique identification of the parameters of the continuous-time stochastic process

from equidistant discrete-time observations. Moreover, any temporal aggregation of the data

may distort our parameter estimates. For these reasons, it seems important to examine to

which extent our parameter estimates change with the observation frequency. (ii) Does

the high-frequency data matter? So far, we only exploit the high-frequency property of

the interest rate in the approximation of the integrals as Riemann sums. Hence, we want

to examine to which extent the use of daily observation respectively only considering the

end-of-period figure helps to identify the parameters in our analysis.

[insert Table 3]

In order to examine to which extent the parameter estimates change with the sampling

frequency, we simulate monthly and quarterly data respectively, with the same number of

observations for comparison. In Table 3 we compare the usual 25 years of monthly data to

75 years of simulated quarterly data (Panel A). As before, we provide the median estimate of

each parameter, and below the interquartile range of the 1,000 estimates. The results show

that the bias in the κ estimate is much smaller with quarterly data than if the data were

sampled at monthly frequency. Moreover, the interquartile ranges are substantially smaller

with quarterly data for all four estimation methods. It reveals that the time invariance

property translates to all parameters of interest except the mean-reversion parameter κ.

This upward bias, however, seems to diminish if quarterly data were used provided the

number of observation is sufficiently large (compare also to the results in Table 1).

We also examine what our results would like if we would not use the daily availability of

interest rates but only used the end-of-period number. To this end we simulate the data as

usual, but only use the end-of-month and end-of-quarter short rate in our estimation rather

than the integrals. This simply neglects all within-period dynamics. In Table 3 we show the

results for monthly data and quarterly data (Panel B). Comparing to the results in Table 1

shows that neglecting within-period dynamics is not innocuous. The general pattern is that
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it comes at the cost of increasing inter-quartile ranges and changes in parameter estimates.

In particular, the estimate for the mean-reversion parameter κ changes substantially for

OLS, FGLS-SUR-IV, and GMM. Moreover, we get into more severe identification problems

for σ in the regression-based approaches and now also for GMM. In contrast, we observe

only minor efficiency losses for the MEF approach. Here, we still provide some information

about the dynamics of the stochastic process by the deterministic Taylor expansion (36).

This pattern suggests that both high-frequency data and/or more information about the

within-period dynamics help to identify the parameters of interest.

5 Data and Results

In this section we estimate the AK-Vasicek model with logarithmic preferences based on

empirical data. We provide results for the estimation approaches developed in Section 3,

using US mixed frequency macro and financial data.

5.1 Data

[insert Figure 3]

To estimate the system (15) we need data on production, consumption, and the short rate.

We obtain these data for the US from the Federal Reserve Economic Dataset (FRED), main-

tained by the Federal Reserve Bank of St. Louis. To measure production, we use both real

Industrial Production (IP), available at the monthly level, and real Gross Domestic Product

(GDP), available at the quarterly level. We use real Personal Consumption Expenditures

(PCE) at the monthly and the quarterly level to proxy consumption. In Figure 3 we show

the plots of the monthly and quarterly growth rates of the variables (Panels A and B). Our

data set spans the period from January 1982 to December 2012.

We combine the data on these aggregate macro series with financial data typically at

higher frequency, in particular, the short rate. This rate is a theoretical concept and cor-

responds to an infinitesimal time to maturity. In applied work, the short rate is sometimes

treated as a latent variable that is filtered from observed yield data (e.g., De Jong, 2000).

As a starting point, we follow Chapman, Long, and Pearson (1999), and use the 3-month

interest rate as a proxy for the short rate rft of the risk-free financial asset, here taken as the

US treasury bonds. This interest rate is available from the FRED data set at daily frequency.

We use this series to obtain our monthly and quarterly figure by taking the last observation

in the relevant period. Panel (C) of of Figure 3 shows the daily interest rate series. In the

series, a general downward trend of the interest rate is evident.
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Finally, we use the interest rate series to compute approximations to the integrals that

appear in our empirical specification. We approximate the monthly and quarterly series of

integrals using the daily spot rate observations. Given system (15), we approximate three

integrals:
∫ t

t−∆
g(rfv )dv ≈ ∆/P

∑P
i=1 g(r

f
t−∆+i∆/P ), where r

f
t−∆+i∆/P is the 3-month rate on

day i of period t, and P the number of days in the period between t−∆ and t.

5.2 Estimates: Monthly and quarterly data

When taking our model to the empirical data, we experienced numerical optimization diffi-

culties with some of the parameters, which may be due to possible model misspecification.

From Section 4.2, five parameter combinations in theory are identified without exploiting

second moments (specifically, the consumption growth residual variance). Hence, setting one

parameter should allow estimating the remaining five, but the regression-based methods and

GMM had difficulty doing so. The iterative optimization routines either diverged or pro-

duced economically unreasonable estimates that furthermore depended heavily on starting

values. Consequently, in the reported results, two of the six parameters are set at pre-fixed

values for these methods, instead of just one. Again, since ρ − 1
2
σ2 and δ + σ2 are identi-

fied, either two of ρ, δ, or σ2 could be restricted. From the simulation study, σ is weakly

identified when not exploiting second moments, so we set this at 0.02, and δ again at 0.05

(cf. also Table A4 in the accompanying web appendix, where we use variance terms for the

regression-based methods and 5 moments for both GMM and MEF).

In the MEF approach, all six parameters are identified even without using second mo-

ments. Unlike in the simulations, we implemented a slightly simplified version of MEF in

order to avoid similar problems as those encountered with the other methods. Essentially,

the optimal MEF weights ψ⊤
t (Ψt)

−1 from (29) were replaced by weights ψ⊤
t (Ψ̂t)

−1, i.e., still

with time-varying conditional mean parameter derivatives of martingale increments (31),

but the conditional variance (30) replaced by an estimate. Similarly to optimal two-step

GMM, we first estimated with Ψ = I3, then with Ψ̂t computed as the outer product of the

fitted residuals at time t from the first step. We label this approach two-step GMM. All six

parameters were successfully estimated in both steps, and the values for δ and σ broadly in

line with the pre-specified values used in the other methods.18

These identification problems can be interpreted as a first indication that the AK-Vasicek

specification with logarithmic preferences probably will not match the data well. This leads

to some degree of problems for all estimation procedures, in particular GMM, although less

so for the MEF. The likely model misspecification is discussed further below in section 5.3.

18In the web appendix we show that the two-step MEF approach yields similar results compared to MEF
with optimal weights (cf. Table A5).
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[insert Table 4]

Table 4 provides structural parameter estimates based on both monthly and quarterly

data, using industrial production respectively GDP for output, obtained using the OLS,

FGLS-SUR-IV, GMM, and MEF approaches. The regression-based estimation methods

provide fairly similar estimates of the four parameters for monthly and quarterly data. By

the point estimates, the short rate is mean-reverting, but not very strongly, with speed

parameter κ around 0.08 (0.047 to 0.109 for quarterly data). A speed of zero implies a unit

root. The implied first order autocorrelation is e−0.08×1/12 = 0.99 for monthly data. The

long-term target rate γ is about 10%, and the volatility η of the short rate innovation is

between 1.3% and 2.6%. As is well-known, the interest rate has been declining during the

period (see Figure 3, Panel C), so the model will not yield a good fit and is likely misspecified,

but it is worth noting that the 10% level makes sense. Thus, by the asset pricing equation

(14), it comprises the average risk-free rate from the data, the risk premium σ2 consistent

with logarithmic preferences, and the rate δ of physical capital depreciation. For the given

δ and σ, the time preference parameter ρ is estimated at around 1% in monthly and 2% in

quarterly data. Of course, it is important to note that the two data sets differ not only by

sampling frequency, but also by relying on industrial production respectively GDP.

The GMM estimates of κ and γ are similar to those from the regression-based methods,

whereas the point estimates of ρ are about 0.5 percentage points smaller. The main difference

is that GMM does not pick up any of the innovation variance in the interest rate process.

The MEF results are slightly different in some respects, and it should be kept in mind

that they are obtained without restricting δ and σ. In particular, in quarterly data, the

depreciation rate δ is estimated at 6.2%, i.e., 25% higher than the pre-set value used for the

other methods. Consistently with this, the long-run mean interest rate γ is higher, too, at

13%. In monthly data, these are lower, at 2.5% respectively 5.1%, and the κ and η estimates

at both frequencies are similar to those from other methods (except that GMM had trouble

estimating η). Further, MEF produces precise estimates of ρ at the quarterly frequency and

σ at the monthly, even significant at conventional levels (many of the received estimates are

statistically insignificant, across all parameters and methods). Indeed, both the monthly

and the quarterly MEF estimate of σ confirms the value 0.02 imposed in the other methods.

All in all, the application to the empirical data shows that it is possible to estimate our

simple benchmark macro-finance model using macro and high-frequency financial data in

combination. The model is so simple as to be likely misspecified, but the exercise nevertheless

suggests that the MEF is the most promising approach for our purposes.
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5.3 Estimates: Latent short rate and mixed frequency

[insert Table 5]

Table 5 shows the results for our two extensions, the latent short rate and mixed-frequency

estimation (columns 3 and 4). For comparison, we replicate in columns 1 and 2 the MEF

results from Table 4. The latent variable extension, Case (i), reveals more evidence on the

sources of misspecification: the counter-factual model-implied short rate when it is compared

to the observed interest rate proxy. The results of SMEF in column 3 show that if parts

of the data were model-generated, the interest rate consistent with macro dynamics would

show much higher mean reversion κ about 13% and a much lower long-term target rate γ

about 5.8% with very small innovation variance η close to zero. The unusual high t-values

reflect the fact the standard errors are likely downward bias (so the t-values upward biased),

because the additional uncertainty of drawing the short rate is not taken into account, which

in principle could be accounted for by bootstrapping. For illustration, in Figure 4 we plot

one simulated short rate path r∗t . It is worth noting that in contrast to the observed risk-free

rate rft , any model-implied short rate r∗t , for the given consumption and income data, will

be upward sloping. Because the proxy r∗t is set to the ratio ρYt/Ct at quarterly frequency

(indicated by dots), the model-implied short rate follows the same pattern. For this reason,

SMEF is not applicable to monthly empirical data since IP is measured as an index.

The mixed-frequency data, Case (ii), indicates that the MF-MEF long-term value for

the interest rate γ is even smaller, about 3%, but quite persistent. The point estimate for

the speed of mean-reversion parameter κ is 2.3%, which suggests a near unit root behavior.

The innovation variance η is close to zero. Our MF-MEF approach yields a more precise

estimate for ρ of about 1.3% compared to the MEF estimate of 2.1% and 0.3% for quarterly

respectively monthly data. The point estimate for the depreciation rate δ using quarterly

GDP and monthly consumption is smaller than the MEF values, about 1% only.

6 Conclusion

The literature has been relatively quiet on the links between macroeconomics and finance,

though anecdotal evidence – such as the recent financial crisis – clearly shows that financial

markets and the real economy are closely linked. In this paper we provide an econometric

framework in which macroeconomics, finance and econometrics are coherently linked. The

framework is developed in a continuous-time setting, that conveniently allows for thinking

about variables observed at different frequencies.

This paper describes regression-based procedures, OLS and FGLS-SUR-IV, GMM and
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the asymptotically efficient MEF approach in order to estimate the structural parameters of

continuous-time DSGE models using mixed-frequency macro and financial market data. We

illustrate our approach by solving and estimating a stochastic AK model with mean-reverting

interest rates. Our results for both simulated and empirical data are very promising and

show that financial and macro data can indeed be used jointly to facilitate the estimation of

structural parameters in continuous-time versions of the general equilibrium models. Overall,

on the methodological side, our work suggests that MEF is preferred over GMM and the

regression-based approaches as long as the econometrician is restricted to first moments. It

allows identifying all structural parameters already from first moments, and estimates are

more precise, numerically stable, and economically meaningful. We provide two extensions of

MEF akin to filtering in order to estimate models with latent variables based on simulations,

SMEF, and model-consistent prediction for mixed-frequency data, MF-MEF. Development

of further general equilibrium models in the Cox, Ingersoll, and Ross (1985a) framework to

more elaborate specifications, and formal testing of these is part of our research agenda.

7 Appendix

7.1 The Bellman equation and the Euler equation

As a necessary condition for optimality, Bellman’s principle gives at time s

ρV (Ks, As) = max
Cs

{
u(Cs, As) +

1

dt
EsdV (Ks, As)

}
.

Using Itô’s formula yields

dV = VKdKs + VAdAs +
1
2

(
VAAη(As)

2 + VKKσ
2K2

s

)
dt

= ((rs − δ)Ks + ws − Cs)VKdt+ VKσKsdZs + VAµ(At)dt+ VAη(As)dBs

+1
2

(
VAAη(As)

2 + VKKσ
2K2

s

)
dt.

Using the properties of stochastic integrals, we may write

ρV (Ks, As) = max
Cs

{u(Cs, As) + ((rs − δ)Ks + ws − Cs)VK

+1
2

(
VAAη(As)

2 + VKKσ
2K2

s

)
+ VAµ(As)

}

for any s ∈ [0,∞). Because it is a necessary condition for optimality, we obtain the first-order

condition (8), which makes optimal consumption a function of the state variables.

For the evolution of the costate we use the maximized Bellman equation

ρV (Kt, At) = u(C(Kt, At), At) + ((rt − δ)Kt + wt − C(Kt, At))VK

+1
2

(
VAAη(At)

2 + VKKσ
2K2

t

)
+ VAµ(At), (39)
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where rt = r(Kt, At) = YK and wt = w(Kt, At) = YL to compute the costate,

ρVK = ((rt − δ)Kt + wt − Ct)VKK + (rt − δ)VK

+1
2

(
VAAKη(At)

2 + VKKKσ
2K2

t

)
+ VKKσ

2Kt + VAKµ(At).

Collecting terms we obtain

(ρ− (rt − δ))VK = ((rt − δ)Kt + wt − Ct)VKK

+1
2

(
VAAKη(At)

2 + VKKKσ
2K2

t

)
+ VKKσ

2Kt + VAKµ(At). (40)

Using Itô’s formula, the costate obeys

dVK = VAKµ(At)dt+ VAKη(At)dBt

+1
2

(
VKAAη(At)

2 + VKKKσ
2K2

t

)
dt

+((rt − δ)Kt + wt − Ct)VKKdt+ VKKσKtdZt,

where inserting (40) into the last expression yields

dVK = (ρ− (rt − δ))VKdt− VKKσ
2Ktdt+ VAKη(At)dBt + VKKσKtdZt,

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (8) to obtain the Euler equation (9).

As shown in Posch (2009), the model has a closed-form solution for θ = 1, and the value

function is V (Kt, At) = lnKt/ρ + f(At), where f(At) solves a simple ODE, which in turn

depends on the functional forms of η(At) and µ(At). The idea of this proof is as follows.

We use a guess of the value function and obtain conditions under which both the maximized

Bellman equation (39) and the first-order condition (8) are fulfilled. Our guess is

V (Kt, At) = C1 lnKt + f(At). (41)

From (8), optimal consumption is a constant fraction of wealth, Ct = C
−1
1 Kt. Now use the

maximized Bellman equation (39) and insert the candidate solution,

ρC1 lnKt + g(At) = lnKt − lnC1 + ((At − δ)Kt − C
−1
1 Kt)C1/Kt,

in which g(At) ≡ ρf(At) − 1
2
(fAAη(At)

2 − σ2) − fAµ(At). Thus, we obtain the condition

C1 = 1/ρ and collect the remaining terms in g(At) = ln ρ+At − δ − ρ. In the Vasicek case,

η(At) = η and µ(At) = κ(γ−At), we get f(At) = C2At +C3, in which C2 = C1/(ρ+ κ) and

C3 = (κγC2 − lnC1 − 1− (δ + 1
2
σ2)C1)/ρ.
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7.2 The SUR estimator

The standard SUR assessment of the asymptotic variance-covariance matrix of β̂SUR is

V̂SUR = (x⊤V̂ −1x)−1. Note that the (i, j)’th block of the matrix being inverted is Σ̂ijx⊤i xj ,

with Σ̂ij the (i, j)’th entry in Σ̂−1. Thus,

V̂SUR =




Σ̂CCx⊤CxC Σ̂CY x⊤CxY Σ̂Crx⊤Cxr
Σ̂Y Cx⊤Y xC Σ̂Y Y x⊤Y xY Σ̂Y rx⊤Y xr
Σ̂rCx⊤r xC Σ̂rY x⊤r xY Σ̂rrx⊤r xr




−1

.

If the covariances Σ̂ij (i 6= j) are zero, then the estimated asymptotic variance of β̂j coincides

with the OLS assessment Σ̂jj(x
⊤
j xj)

−1. More generally, the SUR approach suggests that the

variance-covariance matrix V̂OLS of the unrestricted OLS estimator from (21) has blocks

estimated as Σ̂ij(x
⊤
i xi)

−1x⊤i xj(x
⊤
j xj)

−1, i.e., V̂OLS equals




Σ̂CC(x
⊤
CxC)

−1(x⊤CxC)(x
⊤
CxC)

−1 Σ̂CY (x
⊤
CxC)

−1(x⊤CxY )(x
⊤
Y xY )

−1 Σ̂Cr(x
⊤
CxC)

−1(x⊤Cxr)(x
⊤
r xr)

−1

Σ̂Y C(x
⊤
Y xY )

−1(x⊤Y xC)(x
⊤
CxC)

−1 Σ̂Y Y (x
⊤
Y xY )

−1(x⊤Y xY )(x
⊤
Y xY )

−1 Σ̂Y r(x
⊤
Y xY )

−1(x⊤Y xr)(x
⊤
r xr)

−1

Σ̂rC(x
⊤
r xr)

−1(x⊤r xC)(x
⊤
CxC)

−1 Σ̂rY (x
⊤
r xr)

−1(x⊤r xY )(x
⊤
Y xY )

−1 Σ̂rr(x
⊤
r xr)

−1(x⊤r xr)(x
⊤
r xr)

−1




−1

and V̂OLS ≥ V̂SUR in the partial order of positive semi-definite matrices.

7.3 MEF with five moment restrictions

Let mt = (εC,t, εY,t, εr,t, ε
2
C,t, ε

2
r,t) be the 5-vector of error terms (16), which again clearly is a

martingale differences in terms of data and parameters,

m
(5)
t =




ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆

ln(Yt/Yt−∆)−
∫ t

t−∆
rfvdv +

(
κ+ ρ− 1

2
σ2
)
∆− κγ

∫ t

t−∆
1/(rfv + δ + σ2)dv

+1
2
η2
∫ t

t−∆
1/(rfv + δ + σ2)2dv

rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆(
ln(Ct/Ct−∆)−

∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆
)2

− σ2∆
(
rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆

)2
− η2(1− e−2κ∆)/(2κ)




or by using the definition of three moment increments

m
(5)
t =




m
(3)
t(

ln(Ct/Ct−∆)−
∫ t

t−∆
rfvdv +

(
ρ− 1

2
σ2
)
∆
)2

− σ2∆
(
rft − (1− e−κ∆)(γ − δ − σ2)− e−κ∆rft−∆

)2
− η2(1− e−2κ∆)/(2κ)


 (42)

36



which is equivalent to consider

m
(5)
t =




σ(Zt − Zt−∆)∫ t

t−∆
η/(rfv + δ + σ2)dBv + σ(Zt − Zt−∆)

ηe−κ∆
∫ t

t−∆
eκ(v−(t−∆))dBv

σ2(Zt − Zt−∆)
2 − σ2∆

η2e−2κ∆
(∫ t

t−∆
eκ(v−(t−∆))dBv

)2
− η2(1− e−2κ∆)/(2κ)




or

m
(5)
t =




m
(3)
t

σ2(Zt − Zt−∆)
2 − σ2∆

η2e−2κ∆
(∫ t

t−∆
eκ(v−(t−∆))dBv

)2
− η2(1− e−2κ∆)/(2κ)


 . (43)

To construct the MEF (28), we need the weights wt in (29), which depend on the condi-

tional mean of the parameter derivatives, ψt, and the conditional variance, Ψt, ofmt. We have

the conditional variances Ψ
(5)
t,11 = σ2∆, Ψ

(5)
t,22 = η2Et−∆(

∫ t

t−∆
1/(rfv + δ + σ2)2dv) + σ2∆, and

Ψ
(5)
t,33 = η2(1−e−2κ∆)/(2κ), Ψ

(5)
t,44 = 2σ4∆2, and Ψ

(5)
t,55 = η4e−4κ∆Et−∆

(
(
∫ t

t−∆
eκ(v−(t−∆))dBv)

4
)
−

1
4
η4(1 − e−2κ∆)2/κ2. Similarly, the conditional covariances are Ψ

(5)
t,12 = σ2∆, Ψ

(5)
t,13 = 0,

Ψ
(5)
t,14 = 0, Ψ

(5)
t,15 = 0, Ψ

(5)
t,23 = η2e−κ∆Et−∆

(
(
∫ t

t−∆
1/(rfv + δ + σ2)dBv)(

∫ t

t−∆
eκ(v−(t−∆))dBv)

)
,

Ψ
(5)
t,24 = 0, Ψ

(5)
t,25 = η3e−2κ∆Et−∆

(
(
∫ t

t−∆
1/(rfv + δ + σ2)dBv)(

∫ t

t−∆
eκ(v−(t−∆))dBv)

2
)
, Ψ

(5)
t,35 =

η3e−3κ∆Et−∆

(
(
∫ t

t−∆
eκ(v−(t−∆))dBv)

3
)
, Ψ

(5)
t,34 = Ψt,45 = 0. We use Euler approximations for

Ψ
(5)
t,22, Ψ

(5)
t,55, Ψ

(5)
t,23, Ψ

(5)
t,25 and Ψ

(5)
t,35,

Ψ
(5)
t =




σ2∆ σ2∆ 0 0 0

σ2∆ σ2∆+ η2∆/(rft−∆ + δ + σ2)2 η2e−κ∆∆/(rft−∆ + δ + σ2) 0 0

0 η2e−κ∆∆/(rft−∆ + δ + σ2) 1
2
η2(1− e−2κ∆)/κ 0 0

0 0 0 2σ4∆2 0

0 0 0 0 Ψ
(5)′

t,55




where Ψ
(5)′

t,55 = 3η4e−4κ∆∆2 − 1
4
η4(1− e−2κ∆)2/κ2 or by using the definition of Ψ

(3)
t

Ψ
(5)
t =




Ψ
(3)
t 03×2

02×3
2σ4∆2 0

0 3η4e−4κ∆∆2 − 1
4
η4(1− e−2κ∆)2/κ2


 . (44)

Again the consistency and the expression for the asymptotic variance are unaffected by

our approximations because they enter only in the weights (29). Using martingale in-

crements (42), we get the derivatives (∂mt/∂φ
⊤)⊤ with respect to the parameter vector
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φ = (κ, γ, η, ρ, δ, σ)⊤, such that (ψ
(5)
t )⊤ reads




(ψ
(3)
t )⊤

0
0
0
0
0

−2σ∆

1
2
η2(1− e−2κ∆)/κ2 − η2∆e−2κ∆/κ

0
−η(1− e−2κ∆)/κ

0
0
0



. (45)

where we used the fact that

ψ
(5)
t,44 = 2Et−∆

(
ln(Ct/Ct−∆)−

∫ t

t−∆

rfvdv + (ρ− 1
2
σ2)∆

)
∆ = 0

which completes the construction of the estimating equations for 5 moment conditions.
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Table 1: Simulation Study – Monthly and Quarterly Data
The table reports output of a simulation study of the accuracy of the structural model parameters estimated using the OLS, FGLS-SUR-IV, GMM
and MEF approaches for the AK-Vasicek model. For 1,000 replications, we generate 25 years of data from the underlying data generating process
(DGP) and apply our estimation strategy. We show the median estimate, and provide the interquartile range below it.

Parameter Estimates from Simulation Study – Monthly & Quarterly Data

Monthly Data Quarterly Data
DGP OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.2 0.349
0.286

0.299
0.134

0.345
0.345

0.354
0.284

0.354
0.290

0.225
0.119

0.287
0.319

0.353
0.305

γ 0.1 0.201
0.036

0.101
0.013

0.100
0.014

0.099
0.013

0.198
0.036

0.100
0.014

0.101
0.015

0.099
0.013

η 0.01 0.083
0.036

0.008
0.004

0.010
0.001

0.010
0.001

0.083
0.035

0.007
0.003

0.010
0.002

0.010
0.001

ρ 0.03 0.080
0.015

0.030
0.006

0.030
0.007

0.030
0.006

0.079
0.015

0.030
0.006

0.031
0.007

0.030
0.006

δ 0.05 0.05 0.05 0.05 0.050
0.002

0.05 0.05 0.05 0.050
0.003

σ 0.02 0.317
0.040

0.000
<0.001

0.027
0.047

0.023
0.005

0.312
0.044

0.000
<0.001

0.040
0.064

0.025
0.010
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Table 2: Simulation Study – Latent Short Rate and Mixed Frequency
The table reports output of a simulation study of the accuracy of the structural model parameters estimated using the latent short rate and mixed-
frequency MEF approaches for the AK-Vasicek model, SMEF (Latent Short Rate) and MF-MEF, respectively. For 1,000 replications, we generate 25
years of data from the underlying data generating process (DGP) and apply our estimation strategy. We show the median estimate, and provide the
interquartile range below it. For completeness we include the MEF estimates from Table 1.

Parameter Estimates from Simulation Study –
SMEF (Latent Short Rate) and MF-MEF

Monthly Data Quarterly Data Mixed Frequency
DGP MEF SMEF MEF SMEF MF-MEF

κ 0.2 0.354
0.284

0.355
0.280

0.353
0.305

0.363
0.290

0.360
0.290

γ 0.1 0.099
0.013

0.099
0.012

0.099
0.013

0.107
0.020

0.099
0.013

η 0.01 0.010
0.001

0.010
0.001

0.010
0.001

0.010
0.002

0.010
0.001

ρ 0.03 0.030
0.006

0.030
0.002

0.030
0.006

0.032
0.005

0.030
0.006

δ 0.05 0.050
0.002

0.051
0.005

0.050
0.003

0.055
0.013

0.050
0.002

σ 0.02 0.023
0.005

0.021
0.003

0.025
0.010

0.021
0.006

0.022
0.005
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Table 3: Robustness Simulations – Time invariance and high-frequency data
The table reports output of two simulation studies to the robustness of our estimation methods. In a first simulation (Panel A) we examine to which
extent the parameter estimates change with the sampling frequency. To this end we simulate the quarterly data set-up with the same number of
observations as the monthly set-up. Specifically, we compare the usual 25 years of monthly data to 75 years of quarterly data. In a second robustness
simulation (Panel B) we examine what our results would like if we would not use the daily availability of interest rates but only used the end-of-period
number. To this end we simulate the data as usual, but only use the end-of-month and end-of-quarter short rate in our estimation rather than the
integrals. We show the accuracy of the structural model parameters estimated using OLS, FGLS-SUR-IV, GMM and MEF for the AK-Vasicek model
with three moment restrictions. For 1,000 replications, we generate the data from the underlying data generating process (DGP) and apply our
estimation strategy. We show the median estimate, and provide the interquartile range below it.

Panel A: Robustness Simulations – Time invariance

Monthly Data Quarterly Data (75 years)
DGP OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.2 0.349
0.286

0.299
0.134

0.345
0.345

0.354
0.284

0.236
0.116

0.179
0.058

0.246
0.145

0.246
0.120

γ 0.1 0.201
0.036

0.101
0.013

0.100
0.014

0.100
0.013

0.190
0.023

0.101
0.008

0.101
0.009

0.100
0.008

η 0.01 0.083
0.036

0.008
0.004

0.010
0.001

0.010
0.001

0.065
0.019

0.007
0.002

0.010
0.001

0.010
0.001

ρ 0.03 0.080
0.015

0.030
0.006

0.030
0.007

0.030
0.006

0.075
0.009

0.030
0.003

0.030
0.004

0.030
0.003

δ 0.05 0.05 0.05 0.05 0.050
0.002

0.05 0.05 0.05 0.050
0.002

σ 0.02 0.317
0.040

0.000
<0.001

0.027
0.047

0.023
0.005

0.299
0.031

0.000
<0.001

0.018
0.052

0.022
0.006

Panel B: Robustness Simulations – Daily vs. Monthly and Quarterly Short Rate

Monthly Data Quarterly Data
DGP OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.2 0.188
0.444

0.395
0.260

0.164
0.164

0.356
0.286

0.184
0.444

0.387
0.287

0.144
0.137

0.353
0.305

γ 0.1 0.241
0.205

0.100
0.013

0.099
0.017

0.098
0.012

0.236
0.195

0.100
0.013

0.099
0.018

0.094
0.013

η 0.01 0.077
0.105

0.009
0.004

0.010
0.001

0.010
0.001

0.075
0.102

0.009
0.003

0.010
0.002

0.010
0.001

ρ 0.03 0.104
0.095

0.030
0.006

0.030
0.006

0.030
0.006

0.101
0.091

0.030
0.006

0.031
0.007

0.030
0.006

δ 0.05 0.05 0.05 0.05 0.048
0.002

0.05 0.05 0.05 0.045
0.004

σ 0.02 0.389
0.435

0.000
0.011

0.000
0.038

0.023
0.005

0.383
0.427

0.000
<0.001

0.032
0.057

0.024
0.010
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Table 4: Estimates – Monthly and Quarterly Data
The table reports estimates for the structural model parameters estimated using OLS, FGLS-SUR-IV, GMM, and MEF approaches for the AK-Vasicek
model with three moment restrictions. We run the estimation for monthly data (where production is measured by IP) and quarterly data (production
measured by GDP). The sample runs from January, 1982 until December, 2012. Asymptotic t-statistics are given below the estimates.

Parameter Estimates from Empirical Data

Monthly Data Quarterly Data
OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.094
0.582

0.073
2.46

0.054
0.314

0.060
0.930

0.109
1.94

0.047
0.221

0.062
0.971

0.068
0.515

γ 0.094
2.08

0.089
<0.001

0.064
0.549

0.051
0.479

0.129
<0.001

0.119
7.97

0.095
2.25

0.131
0.483

η 0.016
0.097

0.013
<0.001

0.000
<0.001

0.006
0.639

0.026
0.081

0.013
1.97

0.000
<0.001

0.014
0.221

ρ 0.014
0.976

0.014
0.430

0.005
0.129

0.003
0.802

0.021
0.974

0.020
0.871

0.015
0.753

0.021
5.95

δ 0.05 0.05 0.05 0.025
0.162

0.05 0.05 0.05 0.062
0.144

σ 0.02 0.02 0.02 0.020
3.3

0.02 0.02 0.02 0.020
1.15
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Table 5: Estimates – Latent Short Rate and Mixed Frequency
The table reports estimates for the structural model parameters estimated using the latent short rate and mixed-frequency MEF approaches for the
AK-Vasicek model, SMEF (Latent Short Rate) and MF-MEF, respectively. We run the estimation for monthly data (where production is measured by
IP), quarterly data (production measured by GDP) and the mixed-frequency data (where production is quarterly data using GDP, and consumption
monthly data). The sample runs from January, 1982 until December, 2012. Asymptotic t-statistics are given below the estimates.

Parameter Estimates from Empirical Data

Monthly Data Quarterly Data Mixed-Frequency
MEF MEF SMEF MF-MEF

κ 0.060
0.93

0.068
0.515

0.126
3.2

0.023
0.137

γ 0.051
0.479

0.131
0.483

0.058
55.8

0.030
0.937

η 0.006
0.639

0.014
0.221

0.000
0.3

0.001
0.005

ρ 0.003
0.802

0.021
5.95

0.009
4.39

0.013
23.2

δ 0.025
0.162

0.062
0.144

0.024
12

0.008
0.042

σ 0.020
3.3

0.020
1.15

0.022
510

0.025
1.06
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Figure 1: Simulation Study – Monthly and Quarterly Data
The figure reports output of a simulation study of the accuracy of the structural model parameters estimated
using the MEF approach for the AK-Vasicek model. For 1,000 replications, we generate 25 years of data from
the underlying data generating process (DGP) and apply our estimation strategy. We plot the distribution
of the obtained estimates, in Panel A for monthly data and in Panel B for quarterly data.

(A) Monthly Data
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Figure 2: Simulation Study – Latent Short Rate and Mixed Frequency
The figure reports output of a simulation study of the accuracy of the structural model parameters estimated
using simulated MEF and mixed-frequency approaches for the AK-Vasicek model, SMEF and MF-MEF,
respectively. For 1,000 replications, we generate 25 years of data from the underlying data generating
process (DGP) and apply our estimation strategy. We plot the distribution of the estimates, in Panel A for
the SMEF (Latent Short Rate) case based on monthly data and in Panel B for MF-MEF approach.

(A) SMEF (Latent Short Rate) for Monthly Data
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(B) MF-MEF
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Figure 3: Overview of Quarterly, Monthly and Daily Variables
In this figure we show time series plots of the variables in our data set at the quarterly (Panel A), monthly
(Panel B) and daily (Panel C) frequency. In Panel A, the top plot shows the growth rate of real Gross
Domestic Product (GDP) and the bottom plot of real Personal Consumption Expenditure (PCE) both at
the quarterly frequency. In Panel B, the top plot shows the growth rate of Industrial Production (IP) and
the bottom plot of real PCE both at the monthly frequency. Panel C shows the nominal 3m interest rate
series at the daily frequency. All series are obtained from the Federal Reserve Bank of St. Louis Economic
Dataset (FRED). The sample runs from January, 1982 until December, 2012.
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Figure 4: Latent Short Rate Estimate
In this figure we show the simulated latent short rate that is obtained from our latent short rate MEF
approach for the AK-Vasicek model. We report the short rate estimate based on quarterly data. The line
represents one path of the simulated short rate series, the dots the proxy r∗t = ρYt/Ct for . The sample runs
from January, 1982 until December, 2012.
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Referee’s appendix

Web appendix to “Estimating Dynamic Equilibrium Models using Mixed Frequency Macro

and Financial Data” (by Bent Jesper Christensen, Olaf Posch and Michel van der Wel).

A Comparison to the discrete-time model

To introduce the reader to the potential advantages of the continuous-time formulation,

we shall examine the equivalent formulation (and solution) of our model in a discrete-time

environment. A straight-forward way of a discrete-time formulation is to consider the Euler

approximation of our model (see e.g., Kloeden and Platen, 1999).

A.1 The model

Production possibilities. For the ease of readability, we present the full model below. The

production function is a constant returns to scale technology

Yt = AtF (Kt, L), (46)

where Kt is the (predetermined) aggregate capital stock, L is the constant population size,

and At is total factor productivity, which follows an autoregressive process

At+1 − At = µ(At) + η(At)ǫA,t+1, ǫA ∼ N(0, 1), (47)

with µ(At) and η(At) generic drift and volatility functions.19 The capital stock increases if

gross investment It exceeds capital depreciation,

Kt+1 −Kt = It − δKt + σǫK,t+1, ǫK ∼ N(0, 1), (48)

where δ is a deterministic rate of depreciation and σ determines the variance of a shock to

the depreciation rate. Note that the stochastic depreciation does not depend on the level of

the predetermined capital stock. This modification is necessary to compute the discrete-time

Euler equation independent from the costate variables (see below).20

Equilibrium properties. In equilibrium, factors of production are rewarded with marginal

products rt = YK and wt = YL, subscripts K and L indicating derivatives, and the goods

19We assume that E(At) = A ∈ R+ exists, and that the sum describing life-time utility in (51) below is
bounded, so that the value function is well-defined.

20It is insightful to relate the two shocks in the system to the continuous-time counterpart by looking at
the Euler approximation ǫA,t+1 ≡ Bt+1 −Bt ∼ N(0, 1) and ǫK,t+1 ≡ Zt+1 − Zt ∼ N(0, 1).

52



market clears, Yt = Ct+It. Although there is no stochastic calculus for discrete-time models,

we may express the evolution of equilibrium output in this economy as

Yt+1 = (At + µ(At) + η(At)ǫA,t+1)F (Kt + It − δKt + σǫK,t+1, L). (49)

Alternatively, we may use an Euler scheme to approximate the next period’s output for small

time intervals (no approximation error in the limit) by

Yt+1 − Yt = µ(At)YA + (It − δKt)YK + 1
2
YKKσ

2 + YAη(At)εA,t+1 + σYKεK,t+1. (50)

Obviously, comparing both (49) and (50) it seems much easier to get a dynamic formulation

of the model which can be used for estimation with the help of stochastic calculus.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes expected

additively separable discounted life-time utility given by

U0 ≡ E0

∞∑

t=0

βtu(Ct, At)dt, uC > 0, uCC < 0, (51)

subject to

Kt+1 −Kt = (rt − δ)Kt + wtL− Ct + σǫK,t+1, (52)

where β is the subjective discount factor, rt is the rental rate of capital, and wt is the labor

wage rate. The paths of factor rewards are taken as given by the representative consumer.

A.2 The Euler equation

The relevant state variables are capital and technology, (Kt, At). For given initial states, the

value of the optimal program is

V (K0, A0) = max
{Ct}∞t=0

U0 s.t. (52) and (47), (53)

i.e., the present value of expected utility along the optimal program. As a necessary condition

for optimality, Bellman’s principle gives at time s

V (Ks, As) = max
Cs

{u(Cs, As) + βEs [V (Ks+1, As+1)]} . (54)

Hence, the first-order condition for the problem is

uC(Ct, At) = βEt [VK(Kt+1, At+1)] , (55)

for any t ∈ [0,∞), and this allows us to write consumption as a function of the state

variables, Ct = C(Kt, At). Obviously, comparing the condition (8) to (55), the discrete-time
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model requires evaluating an integral (integrating out expectations) to obtain the optimal

consumption function. The reason is that the Hamilton-Jacobi-Bellman (HJB) equation in

the discrete-time model (54) requires to solve a stochastic difference equation in contrast to

a deterministic differential equation (which can be useful in finding the numerical solution).

Using the concentrated Bellman equation,

V (Kt, At) = u(C(Kt, At)) + βEtV (Kt+1, At+1)

we may replace the unknown costate variable by known functions to get the Euler equation.

Differentiating with respect to capital (using the envelope theorem) gives21

VK(Kt, At) = βEt [VK(Kt+1, At+1)(1− δ + rt)]

= (1− δ + rt)uC(Ct, At).

Leading the expression one period ahead and applying expectations yields

Et [VK(Kt+1, At+1)] = Et [(1− δ + rt+1)uC(Ct+1, At+1)] .

Inserting back into the first-order condition (55) we arrive at the Euler equation

uC(Ct, At) = βEt [(1− δ + rt+1)uC(Ct+1, At+1)] , (56)

Alternatively, we may use an Euler scheme to approximate the next period’s marginal utility

for small time intervals (no approximation error in the limit) by

uC(Ct+1, At+1) = (1 + ρ− (rt − δ))uC(Ct, At) + uCC(Ct, At)CKσǫK,t+1

+(uCC(Ct, At)CAη(At) + uCA(Ct, At)η(At))ǫA,t+1, (57)

Again, the continuous-time formulation may help to obtain a dynamic formulation which

can be used for estimation of the structural parameters. For example, (57) could be used to

put structure on the residuals in a regression-based estimation approach.

In the following, we restrict attention to the case u(Ct, At) = u(Ct).

21If the stochastic depreciation depends on the predetermined capital stock in (52), it is not possible to
fully replace the costate variable by known functions. The corresponding expression would be

VK(Kt, At) = βEt [VK(Kt+1, At+1)(1 − δ + rt)] + βEt [VK(Kt+1, At+1)σǫK,t+1]

= (1 − δ + rt)uC(Ct, At) + βEt [VK(Kt+1, At+1)σǫK,t+1] .
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A.3 The equilibrium dynamics

Our equilibrium dynamics of the economy can be summarized as

u′(Ct) = βEt [(1− δ + rt+1)u
′(Ct+1)] (58a)

Yt+1 = (At + µ(At) + η(At)ǫA,t+1)F (Kt + It − δKt + σǫK,t+1, L) (58b)

Kt+1 = (1 + rt − δ)Kt + wtL− Ct + σǫK,t+1 (58c)

At+1 = At + µ(At) + η(At)ǫA,t+1 (58d)

Provided that variables Ct, Yt, Kt and also At are observed, the econometrician needs to

consider the system (58) for statistical inference on the deep parameters.

For comparison, the equilibrium dynamics the corresponding continuous-time economy

analogous to the model used in the main text can be summarized as

dCt =
u′(Ct)

u′′(Ct)
(ρ− (rt − δ))dt− 1

2
(C2

Aη(At)
2 + C2

Kσ
2)
u′′′(Ct)

u′′(Ct)
dt

+CAη(At)dBt + CKσdZt (59a)

dYt = (µ(At)YA + (It − δKt)YK + 1
2
YKKσ

2)dt+ YAη(At)dBt + σYKdZt (59b)

dKt = ((rt − δ)Kt + wtL− Ct)dt+ σdZt (59c)

dAt = µ(At)dt+ η(At)dBt (59d)

Provided that Ct, Yt, Kt and also At are observed, the econometrician needs to consider the

system (59) for statistical inference on the deep parameters.

In what follows, we assume that the capital stock Kt is a latent variable, but we can

obtain the real interest rate from financial market data

A.4 An illustration: The stochastic AK model

Consider an AK economy, Yt = AtKt, which implies rt = At and Kt = Yt/rt, and assume

that the consumer has CRRA preferences with risk aversion θ, system (58) reduces to,

C−θ
t = βEt

[
(1− δ + rt+1)C

−θ
t+1

]
(60a)

Yt+1 = (1 + µ(rt)/rt + η(rt)/rtǫA,t+1) (Yt + (rt − δ)Yt − rtCt + rtσǫK,t+1)

= Yt + Ytµ(rt)/rt + (rt − δ)Yt − rtCt + Ytη(rt)/rtǫA,t+1 + rtσǫK,t+1

+((rt − δ)Yt − rtCt + rtσǫK,t+1) (µ(rt)/rt + η(rt)/rtǫA,t+1) (60b)

rt+1 = rt + µ(rt) + η(rt)ǫA,t+1 (60c)
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whereas system (59) reduces to

dCt = (rt − δ − ρ)Ct/θdt+
1
2
(1 + θ)(C2

Aη(At)
2 + C2

Kσ
2)/Ctdt

+CAη(At)dBt + CKσdZt (61a)

dYt = (Ytµ(rt)/rt + (r − δ)Yt − rtCt)dt+ Ytη(rt)/rtdBt + σrtdZt (61b)

drt = µ(rt)dt+ η(rt)dBt (61c)

Both systems give the model in terms of observables (macro and financial market data).

One way of proceeding is to use an Euler scheme (as in Wang, Phillips, and Yu, 2011)

to discretize the system (61) for small time intervals (no approximation error in the limit).

This scheme has the nice feature that the discrete-time econometric toolbox (i.e., either linear

or nonlinear estimation methods following An and Schorfheide, 2007; Fernández-Villaverde,

Rubio-Ramı́rez, Sargent, and Watson, 2007; Fernández-Villaverde and Rubio-Ramı́rez, 2007)

can be applied. As explained in the main text, we do not follow this route. Instead we proceed

by integrating the system of equations and/or use closed-form solutions, for example for the

interest rate Vasicek specification.

B Appendix Tables
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Table A1: Simulation Study – Sensitivity to DGP values
The table reports output of a simulation study into the sensitivity of the Table 1 monthly results for the
OLS (Panel A), FGLS-SUR-IV (Panel B), GMM (Panel C) and MEF (Panel D) methods to the parameter
settings used in the Data Generating Process (DGP). In each Panel, the top row reports the baseline DGP
settings and the second row the estimates obtained for these settings (these are the estimates of Table 1).
Then we vary 1 parameter at the time and consider two settings for each parameters, one value lower than
the one used in the baseline settings and one value higher than those of the baseline DGP settings (while
keeping all other parameters at the baseline settings). In all cases, for 1,000 replications, we generate 25
years of data from the underlying data generating process (DGP) and apply our estimation strategy. We
show the median estimate, and provide the interquartile range below it.

Panel A: Parameter Estimates from Simulation Study –
OLS Sensitivity to DGP values

κ γ η ρ δ σ

Baseline DGP settings 0.200 0.100 0.010 0.030 0.050 0.020

OLS for Baseline DGP 0.349
0.286

0.201
0.036

0.083
0.035

0.080
0.015

0.050 0.317
0.040

DGP with κ = 0.1 0.272
0.251

0.200
0.055

0.070
0.038

0.079
0.019

0.050 0.313
0.058

DGP with κ = 0.5 0.628
0.348

0.201
0.018

0.112
0.033

0.081
0.009

0.050 0.319
0.024

DGP with γ = 0.05 0.325
0.283

0.087
0.036

0.033
0.023

0.049
0.014

0.050 0.193
0.063

DGP with γ = 0.2 0.354
0.287

0.412
0.067

0.174
0.070

0.135
0.033

0.050 0.460
0.067

DGP with η = 0.005 0.354
0.286

0.206
0.034

0.087
0.035

0.083
0.017

0.050 0.325
0.047

DGP with η = 0.05 0.175
0.310

0.054
0.221

0.002
0.040

0.032
0.009

0.050 0.000
0.094

DGP with ρ = 0.01 0.349
0.286

0.201
0.036

0.083
0.035

0.060
0.015

0.050 0.317
0.040

DGP with ρ = 0.1 0.349
0.286

0.201
0.036

0.083
0.035

0.150
0.015

0.050 0.317
0.040

DGP with δ = 0.01 0.349
0.286

0.201
0.036

0.083
0.035

0.080
0.015

0.010 0.317
0.040

DGP with δ = 0.1 0.349
0.286

0.201
0.036

0.083
0.035

0.080
0.015

0.100 0.317
0.040

DGP with σ = 0.01 0.348
0.284

0.201
0.034

0.083
0.035

0.080
0.012

0.050 0.317
0.037

DGP with σ = 0.05 0.351
0.289

0.200
0.045

0.083
0.038

0.080
0.026

0.050 0.319
0.061
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Table A1, Panel B: Parameter Estimates from Simulation Study –
FGLS-SUR-IV Sensitivity to DGP values

κ γ η ρ δ σ

Baseline DGP settings 0.200 0.100 0.010 0.030 0.050 0.020

FGLS-SUR-IV for Baseline DGP 0.299
0.134

0.101
0.013

0.008
0.004

0.030
0.006

0.050 0.000
<0.001

DGP with κ = 0.1 0.263
0.146

0.101
0.022

0.009
0.004

0.030
0.006

0.050 0.000
<0.001

DGP with κ = 0.5 0.403
0.150

0.100
0.006

0.006
0.003

0.030
0.006

0.050 0.000
<0.001

DGP with γ = 0.05 0.404
0.214

0.051
0.012

0.008
0.003

0.030
0.006

0.050 0.000
<0.001

DGP with γ = 0.2 0.220
0.117

0.201
0.014

0.006
0.006

0.030
0.006

0.050 0.000
0.020

DGP with η = 0.005 0.220
0.117

0.100
0.007

0.002
0.005

0.030
0.006

0.050 0.012
0.020

DGP with η = 0.05 0.541
0.305

0.151
0.045

0.029
0.038

0.030
0.006

0.050 0.000
<0.001

DGP with ρ = 0.01 0.299
0.134

0.101
0.013

0.008
0.004

0.010
0.006

0.050 0.000
<0.001

DGP with ρ = 0.1 0.299
0.134

0.101
0.013

0.008
0.004

0.100
0.006

0.050 0.000
<0.001

DGP with δ = 0.01 0.299
0.134

0.101
0.013

0.008
0.004

0.030
0.006

0.010 0.000
<0.001

DGP with δ = 0.1 0.299
0.134

0.101
0.013

0.008
0.004

0.030
0.006

0.100 0.000
<0.001

DGP with σ = 0.01 0.298
0.134

0.101
0.013

0.009
0.003

0.030
0.003

0.050 0.000
<0.001

DGP with σ = 0.05 0.301
0.136

0.100
0.013

0.000
0.007

0.030
0.014

0.050 0.037
0.020
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Table A1, Panel C: Parameter Estimates from Simulation Study –
GMM Sensitivity to DGP values

κ γ η ρ δ σ

Baseline DGP settings 0.200 0.100 0.010 0.030 0.050 0.020

GMM for Baseline DGP 0.345
0.345

0.100
0.014

0.010
0.001

0.031
0.007

0.050 0.027
0.047

DGP with κ = 0.1 0.265
0.312

0.100
0.024

0.010
0.001

0.031
0.007

0.050 0.026
0.049

DGP with κ = 0.5 0.594
0.449

0.101
0.006

0.010
0.001

0.031
0.007

0.050 0.025
0.044

DGP with γ = 0.05 0.335
0.327

0.053
0.013

0.010
0.001

0.031
0.007

0.050 0.033
0.062

DGP with γ = 0.2 0.290
0.312

0.200
0.015

0.010
0.001

0.031
0.007

0.050 0.033
0.048

DGP with η = 0.005 0.330
0.319

0.100
0.007

0.005
<0.001

0.030
0.006

0.050 0.022
0.038

DGP with η = 0.05 0.352
0.351

0.197
0.554

0.050
0.050

0.042
0.265

0.050 0.157
0.678

DGP with ρ = 0.01 0.344
0.348

0.100
0.014

0.010
0.001

0.011
0.007

0.050 0.027
0.047

DGP with ρ = 0.1 0.345
0.345

0.100
0.014

0.010
0.001

0.101
0.007

0.050 0.027
0.047

DGP with δ = 0.01 0.344
0.345

0.100
0.014

0.010
0.001

0.031
0.007

0.010 0.027
0.047

DGP with δ = 0.1 0.344
0.346

0.100
0.014

0.010
0.001

0.031
0.007

0.100 0.027
0.047

DGP with σ = 0.01 0.352
0.361

0.101
0.014

0.010
0.001

0.031
0.003

0.050 0.020
0.044

DGP with σ = 0.05 0.344
0.325

0.100
0.015

0.010
0.001

0.031
0.017

0.050 0.052
0.032
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Table A1, Panel D: Parameter Estimates from Simulation Study –
MEF Sensitivity to DGP values

κ γ η ρ δ σ

Baseline DGP settings 0.200 0.100 0.010 0.030 0.050 0.020

MEF for Baseline DGP 0.354
0.284

0.099
0.013

0.010
0.001

0.030
0.006

0.050
0.002

0.023
0.005

DGP with κ = 0.1 0.212
0.239

0.099
0.026

0.010
0.001

0.030
0.006

0.050
0.002

0.020
0.003

DGP with κ = 0.5 0.624
0.350

0.100
0.005

0.010
0.001

0.030
0.006

0.050
0.001

0.021
0.003

DGP with γ = 0.05 0.393
0.324

0.050
0.014

0.010
0.001

0.030
0.006

0.050
0.002

0.021
0.006

DGP with γ = 0.2 0.356
0.282

0.199
0.013

0.010
0.001

0.030
0.006

0.050
0.002

0.021
0.004

DGP with η = 0.005 0.351
0.286

0.100
0.006

0.005
0.000

0.030
0.006

0.050
0.001

0.021
0.003

DGP with η = 0.05 0.578
0.723

0.143
0.049

0.049
0.006

0.030
0.007

0.051
0.037

0.023
0.130

DGP with ρ = 0.01 0.355
0.283

0.099
0.013

0.010
0.001

0.010
0.006

0.050
0.002

0.022
0.004

DGP with ρ = 0.1 0.356
0.284

0.099
0.013

0.010
0.001

0.100
0.006

0.050
0.002

0.019
0.001

DGP with δ = 0.01 0.356
0.282

0.099
0.013

0.010
0.001

0.030
0.005

0.010
0.002

0.023
0.005

DGP with δ = 0.1 0.357
0.288

0.099
0.013

0.010
0.001

0.030
0.006

0.100
0.002

0.020
0.004

DGP with σ = 0.01 0.355
0.294

0.099
0.013

0.010
0.001

0.030
0.003

0.050
0.002

0.011
0.001

DGP with σ = 0.05 0.356
0.282

0.099
0.013

0.010
0.001

0.030
0.014

0.049
0.002

0.054
0.010
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Table A2: Simulation Study – Variance Terms and 5 Moment Conditions
The table reports output of a simulation study into the incorporation of additional moments for the OLS, FGLS-SUR-IV, GMM and MEF approaches
for the AK-Vasicek model. For 1,000 replications, we generate 25 years of data from the underlying data generating process (DGP) and apply our
estimation strategy. We show the median estimate, and provide the interquartile range below it.

Parameter Estimates from Simulation Study – Monthly & Quarterly Data

Monthly Data Quarterly Data
DGP OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.200 0.168
0.141

0.299
0.134

0.311
0.348

0.285
0.425

0.171
0.155

0.227
0.119

0.177
0.265

0.244
0.422

γ 0.100 0.100
0.015

0.100
0.013

0.102
0.014

0.100
0.015

0.100
0.015

0.101
0.013

0.110
0.059

0.100
0.019

η 0.010 0.010
0.001

0.009
0.001

0.010
0.001

0.010
0.001

0.010
0.001

0.010
0.001

0.010
0.001

0.010
0.001

ρ 0.030 0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

0.030
0.006

δ 0.050 0.050
<0.001

0.050
0.001

0.051
0.002

0.050
0.002

0.050
<0.001

0.051
0.001

0.054
0.067

0.050
0.004

σ 0.020 0.020
0.001

0.020
0.001

0.020
0.001

0.020
0.001

0.020
0.002

0.020
0.002

0.019
0.002

0.020
0.002
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Table A3: Simulation Study – Sensitivity of Regression-Based Methods to δ0 and σ0
The table reports output of a simulation study into the sensitivity of the Table 1 monthly results for the regression-based OLS and FGLS-SUR-IV
methods to the δ0 and σ0 settings. For δ0 we consider 0.01, 0.05 (base) and 0.10, for σ0 we consider 0.01, 0.02 (base) and 0.05. We set the restricted
value for δ equal to δ0 for internal consistency. Panel A reports the performance of the OLS method, Panel B of the FGLS-SUR-IV method. Each
Panel consists of 9 columns, where each column represents a δ0 and σ0 combination. For 1,000 replications, we generate 25 years of data from the
underlying data generating process (DGP) and apply our estimation strategy. We show the median estimate, and provide the interquartile range
below it.

Panel A: Parameter Estimates from Simulation Study – OLS Sensitivity to δ0 and σ0

δ0 = 0.01 δ0 = 0.05 δ0 = 0.10
DGP σ0 = 0.01 σ0 = 0.02 σ0 = 0.05 σ0 = 0.01 σ0 = 0.02 σ0 = 0.05 σ0 = 0.01 σ0 = 0.02 σ0 = 0.05

κ 0.200 0.292
0.281

0.295
0.282

0.305
0.286

0.349
0.286

0.349
0.286

0.350
0.286

0.354
0.281

0.354
0.281

0.354
0.282

γ 0.100 0.108
0.034

0.109
0.034

0.114
0.033

0.201
0.036

0.201
0.036

0.206
0.036

0.312
0.053

0.313
0.054

0.317
0.054

η 0.010 0.039
0.026

0.040
0.026

0.042
0.026

0.083
0.035

0.083
0.035

0.085
0.036

0.131
0.051

0.131
0.051

0.133
0.052

ρ 0.030 0.054
0.012

0.055
0.012

0.057
0.012

0.080
0.015

0.080
0.015

0.083
0.015

0.111
0.024

0.112
0.024

0.114
0.025

δ 0.050 0.010 0.010 0.010 0.050 0.050 0.050 0.100 0.100 0.100
σ 0.020 0.222

0.051
0.224
0.050

0.234
0.047

0.316
0.041

0.317
0.040

0.324
0.040

0.401
0.057

0.402
0.057

0.408
0.058

Panel B: Parameter Estimates from Simulation Study – FGLS-SUR-IV Sensitivity to δ0 and σ0

δ0 = 0.01 δ0 = 0.05 δ0 = 0.10
DGP σ0 = 0.01 σ0 = 0.02 σ0 = 0.05 σ0 = 0.01 σ0 = 0.02 σ0 = 0.05 σ0 = 0.01 σ0 = 0.02 σ0 = 0.05

κ 0.200 0.196
0.210

0.201
0.211

0.223
0.201

0.299
0.134

0.299
0.134

0.297
0.134

0.109
0.058

0.108
0.058

0.104
0.058

γ 0.100 0.067
0.041

0.068
0.039

0.071
0.031

0.101
0.013

0.101
0.013

0.102
0.013

0.161
0.019

0.161
0.019

0.163
0.020

η 0.010 0.018
0.026

0.019
0.024

0.021
0.020

0.009
0.003

0.008
0.004

0.000
0.004

0.000
<0.001

0.000
<0.001

0.000
<0.001

ρ 0.030 0.038
0.008

0.038
0.008

0.039
0.008

0.030
0.006

0.030
0.006

0.031
0.006

0.032
0.006

0.032
0.006

0.033
0.007

δ 0.050 0.010 0.010 0.010 0.050 0.050 0.050 0.100 0.100 0.100
σ 0.020 0.132

0.033
0.133
0.032

0.140
0.028

0.000
<0.001

0.000
<0.001

0.036
0.018

0.058
0.042

0.061
0.040

0.077
0.033
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Table A4: Estimates – Variance Terms and 5 Moment Conditions
The table reports estimates for the structural model parameters estimated using OLS, FGLS-SUR-IV, GMM, and MEF approaches for the AK-Vasicek
model. For OLS and FGLS-SUR-IV we use the variance terms for the consumption and interest rate equation, for GMM and MEF we use 5 moment
conditions. We run the estimation for monthly data (where production is measured by IP) and quarterly data (production measured by GDP). The
sample runs from January, 1982 until December, 2012. Asymptotic t-statistics are given below the estimates.

Parameter Estimates from Empirical Data

Monthly Data Quarterly Data
OLS FGLS-SUR-IV GMM MEF OLS FGLS-SUR-IV GMM MEF

κ 0.096
0.436

0.083
0.270

0.030
0.185

0.069
0.679

0.114
1.064

0.065
2.083

0.045
0.769

0.048
0.697

γ 0.101
4.002

0.101
1.671

0.045
0.186

0.108
0.602

0.134
2.715

0.130
2.329

0.089
2.054

0.098
0.924

η 0.018
1.284

0.018
0.444

0.005
0.669

0.007
0.051

0.028
0.693

0.019
0.608

0.000
<0.001

0.007
0.097

ρ 0.015
0.441

0.015
1.139

0.006
0.153

0.004
0.089

0.022
0.672

0.021
0.957

0.009
0.444

0.020
0.538

δ 0.098
1.298

0.106
1.443

0.050 0.081
0.243

0.128
0.732

0.153
0.682

0.050 0.040
0.173

σ 0.018
0.065

0.018
0.082

0.014
0.994

0.018
0.008

0.018
0.078

0.017
0.003

0.000
<0.001

0.019
0.010
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Table A5: Simulation Study – Iterated MEF Approach
The table reports output of a simulation study of the accuracy of the structural model parameters estimated using the iterated MEF approaches
for the AK-Vasicek model. For 100 replications, we generate 25 years of data from the underlying data generating process (DGP) and apply our
estimation strategy. We report estimates using the MEF approach with both 3 and 5 moment conditions for the regular MEF and iterated approach
for 2 iterations. We show the median estimate, and provide the interquartile range below it.

Parameter Estimates from Simulation Study – Iterated MEF 3 and 5 Moments

Monthly Data Quarterly Data
3 Conditions 5 Conditions 3 Conditions 5 Conditions

DGP MEF two-step MEF MEF two-step MEF MEF two-step MEF MEF two-step MEF

κ 0.200 0.348
0.309

0.239
0.202

0.288
0.480

0.200
0.204

0.353
0.310

0.316
0.339

0.241
0.366

0.209
0.129

γ 0.100 0.100
0.012

0.109
0.048

0.101
0.014

0.104
0.017

0.099
0.013

0.130
0.074

0.100
0.021

0.107
0.021

η 0.010 0.010
0.001

0.001
0.002

0.010
0.001

0.010
0.000

0.010
0.002

0.000
0.001

0.010
0.001

0.010
0.001

ρ 0.030 0.030
0.005

0.032
0.010

0.030
0.006

0.031
0.007

0.030
0.006

0.032
0.016

0.030
0.005

0.030
0.012

δ 0.050 0.050
0.002

0.059
0.045

0.050
0.002

0.051
0.008

0.050
0.003

0.072
0.063

0.050
0.005

0.055
0.019

σ 0.020 0.022
0.005

0.025
0.018

0.020
0.001

0.020
0.001

0.024
0.011

0.030
0.030

0.020
0.002

0.020
0.003
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