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Abstract

This paper shows how to solve and estimate a continuous-time dynamic stochastic
general equilibrium (DSGE) model with jumps. It also shows that a continuous-time
formulation can make it simpler (relative to its discrete-time version) to compute and
estimate the deep parameters using the likelihood function when non-linearities and /or
non-normalities are considered. We illustrate our approach by solving and estimating
the stochastic AK and the neoclassical growth models. Our Monte Carlo experiments
demonstrate that non-normalities can be detected for this class of models. Moreover,
we provide strong empirical evidence for jumps in aggregate US data.
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1 Introduction

This paper shows how to solve and estimate a continuous-time dynamic stochastic general
equilibrium (DSGE) model with jumps. It also shows that a continuous-time formulation
can make it simpler (relative to its discrete-time version) to compute and estimate the deep
parameters using the likelihood function when non-linearities and/or non-normalities are
considered. We readopt formulating stochastic models in continuous time (in the tradition
of Merton 1975, Eaton 1981, Cox et al. 1985), because for reasonable specifications and
parametric restrictions, these models can be solved in closed form.! Given the closed-form
solution, we compute the likelihood function which then is evaluated for estimation. We
illustrate the technique by solving and estimating the stochastic AK and the neoclassical
growth models. We highlight two results. First, our Monte Carlo experiments demonstrate
that non-normalities can be detected for this class of models. Second, we provide strong
empirical evidence of non-normalities in the form of jumps in aggregate US data.

In the field of macroeconometrics, DSGE models have become very successful tools for
capturing the main features of business cycle fluctuations. One caveat of the traditional
discrete-time formulation is that dynamic general equilibrium models are difficult to solve.
It has become popular in macroeconomics to use higher-order approximation schemes to
circumvent problems induced by linearizations (Schmitt-Grohé and Uribe 2004). However,
most DSGE models in the traditional formulation do not imply a likelihood function that
can be evaluated, which makes them even harder to estimate even under small departures
from the linear and Gaussian assumptions. Fernandez-Villaverde, Rubio-Ramirez and Santos
(2006) show that small approximation errors in the solution of the model can have sizable
effects on the parameter estimates. Hence the literature is making a huge effort to compute
and estimate models with non-linearities and/or non-normalities. These have turned out to
be important features of the business cycle for the US economy (Fernandez-Villaverde and
Rubio-Ramirez 2005, 2007, Justiniano and Primiceri 2008).2

Powerful numerical methods have greatly increased the capability of solving complicated
DSGE models. Nonetheless, apart from being a pedagogical device, closed-form solutions are
complementary because they provide a benchmark for at least three occasions. First, they
are the point of reference from which perturbation methods can be used to explore broader
classes of models (Judd 1997). Second, they shed light on specific mechanisms, e.g., in which

way uncertainty and non-linearities interact (Smith 2007). Finally, as this paper illustrates,

!The seminal paper of a stochastic growth model is Brock and Mirman (1972). Recent contributions of
continuous-time DSGE models include Corsetti (1997), Wélde (1999, 2005), Steger (2005), Turnovsky and
Smith (2006), and Smith (2007). An introduction can be found in Turnovsky (2000).

2A review of likelihood-based Bayesian estimation of DSGE models is in An and Schorfheide (2007).



closed-form solutions serve as a benchmark for estimation as they simplify likelihood-based
inference especially in the presence of non-linearities and/or non-normalities.

There is a tradition in macroeconomics estimating continuous-time models formulated
by systems of stochastic differential equations (among others Phillips 1972, 1991, Hansen
and Scheinkman 1995).> One challenge when estimating the continuous-time model using
discretely sampled observations is that all changes are jumps by construction. In financial
econometrics Ait-Sahalia (2004) demonstrates that it is possible to disentangle Brownian
noise from jumps even if the jump process exhibits an infinite number of small jumps in any
finite-time interval. Our Monte Carlo experiments show that this method can be applied to
macroeconomics for reasonable observation frequencies and parameter sets.

This paper is related to the literature on rare disasters (Rietz 1988, Barro 2006), and to
the literature where jumps are the determinants of economic growth (cyclical growth models
as in Bental and Peled 1996, Matsuyama 1999, Francois and Lloyd-Ellis 2003, Walde 2005).
A key aspect of the empirical analysis is the measurement of the frequency and the sizes of
jumps in macroeconomics. We establish that ‘rare events’ are much more frequent and with
smaller jump-sizes than typically assumed for the rare disaster hypothesis.

The remainder of the paper is organized as follows. Section 2 introduces the estimation
framework. Section 3 solves continuous-time DSGE models and shows how these models
can be estimated. Section 4 conducts the Monte Carlo experiments. Section 5 discusses the

empirical results for the US economy. We conclude in Section 6.

2 A framework for likelihood inference

In this section, we describe our framework to perform likelihood-based inference. In order
to detect non-normalities in the form of jumps in actual macroeconomic series we employ a

similar specification as in Ait-Sahalia (2004). Consider the jump-diffusion process
Xa=X,—Xeoa= (= 30)A+ (By — Beoa)n + [ A JodN,,  p,n € R. (1)

B; is a standard Brownian motion, J; is an independent random variable with mean v and
variance 7, and N; is a standard Poisson process with arrival rate A\.* This specification
implies, in particular, that the series is independent and identically distributed. It is shown

below that many DSGE models indeed imply observables as in (1).

3See Gandolfo, ed (1993, chap.1-3) and the references therein for early developments in the field.

4Tt represents the exact solution to the stochastic differential equation dX; = (u— %n2)dt +ndBt + J:dN;.
Note that the Poisson process N; denotes the number of arrivals in a time interval [0,¢), and dN; can either
be zero or one. Since B is a standard Brownian motion, By = 0, Bi1a — B: ~ N(0,A), ¢ € [0, 00).



Since we will be working with maximum likelihood techniques, the jump-size distribution,
Ji, has to be fully specified. We assume a binomial distribution. At each instant of time a
positive jump in output growth rates (success), v > 0, occurs with probability ¢, whereas a

negative jump (disaster), —vg < 0 occurs with probability 1 — ¢,°

s with
- { vs wi q . (2)
—vy with 1—g¢

The parameter vector is 0 = (vg, vg, A\, 1, 4, q), where v; and v, are the jump terms for
positive and negative jumps (v is the average size of jumps), A is the arrival rate of the
Poisson process, n is the volatility of the Brownian process, p is the drift of the Brownian
process, and ¢ is the probability that a jump is of size v,. For the general estimation problem

to be well defined, we restrict (v, vg4, A,n) > 0 to be non-negative and 0 < ¢ < 1.

2.1 The probability density function

We closely follow Ait-Sahalia (2004) to obtain the probability density function, or transition
density of X, which will be used later for likelihood inference. Conditioned on the events
QA = n (number of jumps) and Sa = k (number of successful jumps), there must have been
exactly n times, say s;, ¢ = 1, ...,n, such that dN;, = 1. Therefore the sum of n independent
jump terms is ftt_A JsdNy =37 J. = vsk — vg(n — k). Applying Bayes’ rule yields

Pr(Xa <2;0) =) > Pr(Xa <a|Qa =n,Sa =k;0) x Pr(Qa =n, 55 = k;0).  (3)

n=0 k=0

Observe that the conditional distribution is
Pr(Xa < zQa = 1,57 = k;0) = @ {(x— (n—350)A — vk +valn —k))/n},  (4)

where ® is the Normal cumulative distribution function with mean zero and variance A.

Moreover, the probability of & successful jumps is

Pr(Qa =n,Sa =k;0) = Pr(Sa=k|Qa =n;0) x Pr(Qa =n;0)

exp]il_(iA_)g)\!A)nqk(l — gk, (5)

Inserting both results in (3), we obtain the cumulative distribution function of Xa as

(z— w/ne 2 —)\A()\A n

Pixa a0 =303 [ S O gy

®Note that J; has mean v = v4q — v4(1 — ¢q) and variance v = (vs + v4)%q(1 — q).
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where w = (u— %nz)A—l—ysk‘—yd(n—k:). Applying Leibnitz’ rule, it follows that the probability

density function of X, is

© n T —w)? efx\A n
prte8i0) = 33w (TN ) L Ok

It shows that the distribution is a mixture density. Intuitively, three components are involved,
(a) the density of the normal distribution, augmented by (b) terms of the Poisson distribution
and (c) terms of the Binomial distribution. Similar formulas used for maximum likelihood
estimation are contained in Press (1967), Lo (1988) and Ait-Sahalia (2004).

2.2 Maximum likelihood estimation

Because the process Xa in (1) has the Markov property, and because that property carries
over to any discrete subsample from the continuous-time path, the average log-likelihood

function over N observations has the form
In(0) = N1 In{px(x, A;0)}, (7)

where 6 denotes the parameter vector that maximizes ¢y (6). Owing to difficulties that arise
as a result of the complexity of the infinite series representation, the maximum likelihood
(ML) approach does not yield explicit estimators for this problem (Press 1967).

We obtain the parameter estimates via numerical evaluation of the log-likelihood in (7).
Asymptotic standard errors are based on the outer-product estimate of Fisher’s information
matrix, J = N-' 0N {h(z, A; 0)}Hh(x, A;0)}7, for h(z, A;8) = dln{px(x,A;6)}/06],_;.
By the central limit theorem (Hamilton 1994, Ait-Sahalia 2004), the distribution of the ML
estimate, é, for sufficiently large sample size N is approximately N (6p, AN"1T71).

Using the closed-form density in (6), we can apply standard techniques to test for jumps.
Hence, denoting 6 as the unrestricted ML estimate, and 6 as the estimate satisfying the

restriction Hy : A = 0, asymptotically we obtain (Sgrensen 1991, Hamilton 1994, p.144)
2(¢n(0) — En(0)) = X*(r), (8)

where r denotes the effective number of restrictions. In case of four effective restrictions, if
the test statistic in (8) exceeds 9.49 (7.78), we can reject the null hypothesis of no jumps
(Hp : A =0) at the 5% (10%) significance level.



2.3 Inferring jumps from large realized observables

In this section, we illustrate how to assign ‘probabilities’ of occurred jumps to observables.
These empirical probabilities could then be used to identify jumps in the data: Given an
observation of magnitude x, what is the likelihood that such a change involves a jump?

Applying Bayes’ rule to compute the probability of one success given the realization x,

Pr(Qa =1,5A =1, XA > x;0)
Pr(Xa > z;0)
(1 =Pr(Xa <z|Qa =1,5r=1;0)) x Pr(Qa = 1,51 = 1;0)
1 —Pr(Xa <uz:0)
(1—-@{(z—(n—3in*)A -, /77}) qge M A\A
1= 3020 o ® {(z — (1 — 32)A = vk + va(n — b)) /n} S5 gh (1 — g+

PI‘(QA = 1,SA = 1‘XA 2 x; 9) =

where the probability of one success is Pr(Qa = 1,51 = 1;6) = ge™*2XA. Similarly, one

obtains the probability of one disaster, or two or more jumps given the realization x.

3 The macroeconomic theory

Below we solve continuous-time DSGE models (Merton 1975, Eaton 1981, Cox et al. 1985).
The main advantage of this formulation is that we can use 1t6’s formula to easily work with
functions of Brownian motions and Poisson processes. Moreover, for many cases we can solve

the model by hand and obtain closed-form expressions for the likelihood function.

3.1 The model

Production possibilities. At any time, the economy has some amounts of capital, labor, and
knowledge, and these are combined to produce output. The production function is a constant

returns to scale technology subject to regularity conditions (see Chang 1988),
Y;t = AtF(Kt7 L)7 (9)

where K; is the aggregate capital stock, L is the constant population size, and A; is the
stock of knowledge or total factor productivity (TFP), which in turn is driven by a standard

Brownian motion B; and a standard Poisson process N; with arrival rate A,

dA; = p(Ay)dt +n(A)dB, + (exp(Ji) — 1) Ai—dN;. (10)



In this formulation pu(A;) and n(A;) are generic functions satisfying regularity conditions
specified below. The jump size is assumed to be proportional to its value an instant before
the jump, A;_, ensuring that A; does not jump negative. The independent random variable
J; has constant mean v and variance v and specifies the jump-size distribution.

The capital stock increases if gross investment I; exceeds capital depreciation, § Ky,

Preferences. The economy is populated by a large number of infinitely-lived identical
individuals, each sufficiently small to neglect effects on aggregate variables. Each individual
supplies one unit of labor when labor is productive. The representative consumer maximizes
expected life-time utility from the integral of instantaneous utility u = u(c¢;) enjoyed from

consumption ¢;, discounted at the rate of time preference p,

Uy = Ey [,° e ule)dt, u' >0, u" <0, (12)
subject to

da; = ((ry — 0)ay + wy — ¢;)dt. (13)

a; = K;/L denotes individual wealth, 7, is the rental rate of capital, and w; is labor income.
The paths of factor rewards are taken as given by the representative consumer.

Equilibrium properties. In equilibrium, factors of production are rewarded with value
marginal products, 7, = Yx and w; = Y7, and the goods market is cleared Y, = C; + I,.
Applying 1t6’s formula (e.g. Protter 2004, Sennewald 2007), the technology in (9) together

with (11) and the market clearing condition implies that output evolves according to

d}/; = YA(dAt — (eXp(Jt) — 1) At,dNt) + (K — }/;g,) dNt + YKth
= (Yap(Ay) + Y (Vi — Cp — 0Ky)) dt + Yan(Ay)dB; + (exp(Jy) — 1) Yi_dN;.  (14)

It describes a stochastic differential equation (SDE), more precisely a jump-diffusion process

which, for solving, demands more information about the behavior of households, C; = Lc;.

3.2 Obtaining the solution

Solving the model requires the aggregate capital accumulation constraint (11), the goods
market equilibrium, equilibrium factor rewards of perfectly competitive firms, and the first-
order condition for consumption. It is a system of differential equations determining, given

initial conditions, the paths of K, Y;, ry, w, and CY, respectively.



Define the value of the optimal program as

V(ag, Ag) = {m}ax Up st. (13) and (10), (15)
ct}iZo
denoting the present value of expected utility along the optimal program. It can be shown
that the first-order condition for the problem is (cf. Appendix A.1)

u'(¢r) = Valag, Ay) (16)

for any ¢ € [0,00). The condition (16) makes consumption a function of the state variables,

¢t = c(ay, Ay), or equivalently, C; = C'(Ky, A;), and the maximized Bellman equation reads

pVia, Ay) = ulc(ay, Ay)) + ((re — 8)ay + wy — c(ag, A)) Vo + Vau(Ay) + %VAAn(At)z
+ (qV(at, e Ay) + (1 —q)V(ag, e " Ay) — Viay, At)) A, (17)

where r; = r(a;, A;) and wy = w(ay, Ay) follow from the firm’s optimization problem.

The (implicit) solution to the dynamic general equilibrium model is the value function
which satisfies both the first-order condition (16) and the maximized Bellman equation (17),
subject to appropriate boundary conditions. We use a verification theorem which requires the
existence of an optimal control and the existence of a well-behaved indirect utility function
for the Bellman equation (Chang 1988, Sennewald 2007). In practice, one makes a guess of
the value function and derives the conditions under which this candidate is the solution to
the control problem (as shown in Appendices A.2 to A.4). Using the first-order condition,
the resulting function V'(a;, A;) then implies the policy function, ¢; = c(ay, Ay).

3.3 Estimation strategies

In principle, the choice of the model specification should not interfere with our objective to

detect jumps in macro-data. To see this result use 1t0’s formula,

dnY, = (u(A)/A+ (1= C(K;, Ay)/Y: — 6K,/Y,)Yi) dt — Sn(Ay)* /Afdt

Notice that the output growth rates per unit of time, ga = InY; — InY; A, are obtained by
simple integration of (18). Hence the jump term in (1) is independent of specific assumptions
about functional forms for p(-) and 7(-) or the policy function C(K;, A;). As shown below,
the appropriate filtering of transitional dynamics does in fact depend on the models.

In this paper, the state variables are not directly observable, but linked to observables



such as aggregate consumption and output. In order to use hypothesis (1) for output growth
rates, which gives a closed-form expression for the probability density function, we choose
appropriate functional forms for p(-) and 7(-) and employ two estimation strategies. Our
first strategy exploits equilibrium conditions to filter model-specific dynamics from observed

output growth rates.5 Then (1) is obtained ezact by defining
95 = 9a— [_A(1 = C(K,, AJ)/Y. = 6K,/ Y.)Yids, (19)

The correct filter depends on the underlying model and works only for specific cases. Our
second strategy neglects actual dynamics in output growth rates and exploits equilibrium

moment conditions for the mean. In that case (1) is obtained approzimate,
g3 = B (92— J) a00(A)/AAB, + JAN,)) + [! \(n(A,)/AdB, + JudN,),  (20)

and E(-) = limy_.oo By (1 — C(Ky, Ay)/Y: — 6K, /Y2) Y + u(-) /Ae — $n(-)? /A7) € R denotes
the mean of some limiting distribution. It requires the existence and a correct specification
of E(-), but gives reasonable estimates if variables are close to the mean.” Section 4 provides
Monte Carlo evidence suggesting that both strategies work in practice.

Thus the explicit solutions below are used (a) to provide proofs of existence and their
necessary conditions, (b) to study the implications of specific functional forms, and (¢) to

obtain a representation as in (1) that accounts for model-specific characteristics.

3.4 Explicit solutions

We restrict our attention to the widely used class of utility functions which is characterized

by constant intertemporal elasticity of substitution (CES),

u(ey) = , o>0, (21)

where o = 1 refers to u(c;) = In¢; (neglecting a constant for notational convenience).

SIf the assumed TFP process for (10) has the Markov property, our ‘filtered’ output growth rates will be
Solow residuals, In A; — In A;_a. Hence, as an alternative approach, the estimation method can be used as
a reduced form analysis for establishing jumps in macroeconomics using Solow residuals.

"This approach is different from approximating the continuous-time representation with a discrete-time
model which takes into account the dynamics of the system (see e.g. Gandolfo, ed 1993, p.20). It neglects
model-specific dynamics and assumes that observables are drawn directly from the limiting distribution.



3.4.1 The stochastic AK model

Specification. Suppose that output is generated according to a linear technology;,

K - Ath, (22)

which means that all input factors can be accumulated (labor is not a factor of production).®

As a result, the rental rate of capital, r; = Yx = A;, replicates the dynamics of TFP,
dre = p(re)dt +n(re)dB; + (exp(Je) — 1) ri—dNy. (23)

Since capital is the only accumulable factor, its rewards can be interpreted as a very short
run (certain) interest rate (Merton 1975). We use this result to make plausible assumptions
on u(-) and n(+) linking the model’s equilibrium capital rewards to models of the short-rate

process in other areas of research (cf. Alt-Sahalia 1996).

Proposition 3.1 (Log-preferences) Given any process in (10) that implies boundedness
of life-time wutility (12) for all admissible consumption paths, if elasticity of intertemporal

substitution (EIS) is 1/o = 1, then optimal consumption is linear in wealth.
ljo=1 = ¢ =cla)=pa (24)

Use the policy function (24), C; = Le¢; = pKy, and the resource constraint (11) to obtain the
growth rate of aggregate consumption g = InCy —InCy_p = —(p+ 0)A + f;A rsds.

Case 3.2 (Standard TFP) Suppose (10) is geometric, i.e., u(A;) = nAs, n(Ay) = nAy,
dry = prydt + nrd By + (exp(Jy) — 1) r—d Ny, pu,m € R. (25)
Employing the dynamics for standard TFP in (18), and inserting C; = pK; yields
ga = —(p+ ) A+ [ reds+ (n—n)A+ (Bi — Bea)n+ [ 5 JudN,.  (26)

Discussion. The dynamics imply Merton’s (1973) interest rate process in (25), allowing
for jumps. An important caveat is that r;, in general, is not stationary, hence does not have
a limiting distribution. It implies a parameter restriction such that Fy(A;) # 0 exists for
large ¢ and pins down the admissible parameter set to = (1 —e%q—e "4(1 —¢q))A, and the

boundedness condition reduces to p > 0. This restriction can be tested empirically.

81t describes an economy similar to deterministic models in Romer (1986), Jones and Manuelli (1990),
and Rebelo (1991). A slightly different approach is taken in Eaton (1981) (for a discussion see Smith 2007).

9



Estimation. Observe that our ezact estimation strategy can be applied as follows. From
(26) we use g4 = ga — g% to obtain filtered growth rates (19). Because of E (A;) = A; is

not unique Vs, the approximate approach cannot be applied here.

Case 3.3 (Stationary TFP) Suppose (10) is geometric-reverting, p(A;) = c1Ai(ca — Ay),
n(Ay) = nAy, and let co = p+ 0 + p/cq denote the non-stochastic steady state,

dry = ciri(ca — 1y)dt + nrid By + (exp(Ji) — 1) re—d Ny, p,m,c1, 00 € Ry (27)
Employing the dynamics for stationary TFP in (18), and inserting C; = pK; yields
ga=(1—c)(—=(p+ A+ [ reds) + (u—)A+ (By — Bia)n + [\ JudN;. (28)

Discussion. The dynamics imply Constantinides’ (1992) reverting interest rate process
in (27) accounting for jumps. In that ¢, is the speed of reversion and c¢; is the non-stochastic
steady state. Moreover, r, has a limiting distribution where E(r) = (c1co — n? +vA) /ey, the
boundedness condition is p > pu + (e q + e ¥4(1 — q) — 1)A. Observe that for ¢; = 1 output
growth rates do not exhibit patterns of autocorrelation, that means consumption dynamics
exactly offsets the effects of reverting capital rewards (27).

Estimation. The ezact approach uses g4 = ga — (1 — ¢1)g4 to get filtered growth rates
(19), but requires knowledge of the speed of reversion (¢; # 1). The approzimate strategy
employs g& = (u— 3n%)/c1 A+ 1;—1'311/)\A + (B — Bi_a)n+ ft’iA JsdNs with the same caveat.
It gives E(ga) = (1 — 21> + vA)/c1A as the mean of some limiting distribution.

3.4.2 The stochastic neoclassical model

Specification. Suppose that production takes the form (Mirrlees 1974, Merton 1975)
Y, = A KMLYe, (29)
which means that only physical capital can be accumulated, labor is productive, and let
dA; = pAydt + nAdBy + (exp(Jy) — 1) Ai—dNy,  p,m € R. (30)

It seems reasonable to use standard (non-stationary) dynamics for the TFP process in (10),
because for the neoclassical model A; is the only source of long-run economic growth. As an

immediate result, the rental rate of capital, 7, = Yx = oA, K" 'L, obeys

dry = 1?70‘ (aCy/ Ky + ad + pa/(1 — ) — ry) mdt + nrd By + (exp(J;) — 1) r—d Ny,  (31)

10



which depends on households optimal consumption decisions. Due to decreasing returns to
scale, the rental rate of capital in itself is a reverting process (see also Merton 1975). It is

shown below that we obtain the same dynamics as in (27) for two cases.

Proposition 3.4 (Linear-policy-function) Given any process in (10) that implies bound-
edness of life-time utility (12) for all admissible consumption paths, if the output elasticity

of capital is the reciprocal of the EIS, then optimal consumption is linear in wealth.”
a=0c = ¢ =c¢a; where ¢=(p+(1—0)d)/o (32)

Use the policy function (32), Cy = Le; = ¢ Ky, and the resource constraint (11) to obtain the
growth rate of aggregate consumption gX = InCy —InCy_p = — (¢ + I)A + 1/« ftt_A ryds.
Employing the dynamics for standard TFP in (18), and inserting C; = ¢ K; yields

ga = —a(p+6)A + ftt_A reds + (pn— in*)A+ (B; — Bi_a)n + ftt_A JsdN. (33)

Discussion. 1t is notable that (32) endogenously implies Constantinides’ (1992) reverting
interest rate process in (31) allowing for jumps. Defining parameters for the speed of reversion
= 1?70‘ and the non-stochastic steady state co = p+0+p/cq, then r; has the same dynamics
as in (27), thus a limiting distribution with E(r) = (cico — 37* + vA)/c1. The boundedness
condition is p > u+ A(e"*q+ e ¥4(1 — ¢q) — 1) (as shown in Appendix A.5).

Estimation. Because of established priors about the output elasticity of capital «, the
exact approach may use g4 = ga — ag4 to get filtered growth rates (19). The approzimate
strategy employs g4 = 2= (1 — 37*)A + 12-VAA + (B, — By_a)n + j;iA JsdNg and gives

E(ga) L (1 — 3n° + vA)A as the mean of some limiting distribution.

= 11—«

Proposition 3.5 (Constant-saving-function) Given any process in (30) that implies bound-
edness of (12) for all admissible consumption paths, if the subjective discount factor is
p=(aoc—1)5—op+ 30(l+0)n*+ (e q+ e (1 — q) — 1)\, then optimal consumption

1 a constant fraction of income.
p=p = c=1-sAay, oc>1, where s=1/o (34)

Use the policy function (34), C; = Ley = (1—5)Y;, and the SDE for output (14) to obtain

the immediate result that consumption simply replicates the dynamics of output. Employing

9This parametric restriction is fairly well established in macroeconomics (Chang 1988, Xie 1991, 1994,
Boucekkine and Tamarit 2004, Wilde 2005, Smith 2006, 2007).
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the dynamics for standard TFP in (18), and inserting C; = (1 — s)Y; yields
ga = —adA+1/0 ['  rids + pA — 2?A + (B, — Bioa)n + [! . JsdN,. (35)

Discussion. Similar to the linear-policy function (32), the solution in (34) endogenously
implies Constantinides’ (1992) reverting interest rate process in (31) accounting for jumps.
We obtain the speed of reversion ¢; = %, the non-stochastic steady state co = aod + /e,
and the mean of the limiting distribution E(r) = (cic2 — 1* +vA)/ci. Because consumption
has the same dynamics as output, there is no way to filter output growth rates for model
dynamics. It can be shown that p > (u—3n*+vX)(1—0)/(1—a) is sufficient for boundedness.

Estimation. There is no way to employ the ezact approach because the solution has the
(counterfactual) implication that output and consumption growth rates are identical. The
approximate approach employs g = ﬁ (u — %772) A+ ﬁy)\A—l—n(Bt—Bt,A)—i—f;A Jod Ny,
which is the same as for any solution to the neoclassical growth model. Intuitively, this results
is obtained because by assumption growth is exogenous, i.e., the mean growth rate of some
non-degenerated limiting distribution will not depend on household’s behavior.

To summarize, we obtain two solutions to the neoclassical model and we can thus address

the approximation error when using the approrimate approach for plausible scenarios.

4 Monte Carlo evidence

A legitimate question is whether the estimation methods, usually applied for high frequency
data, have relevance at the discrete observation frequencies of macro-observables. As shown
in Ait-Sahalia (2004), increasing the frequency of observations reduces the Brownian noise
holding the jump-size constant (time-smoothing effect). In most applications, the higher is
the observation frequency, the higher is the probability that a jump can be recognized as such
from large realizations. Macroeconomists, however, can make use of monthly or quarterly
data only. A simulation experiment estimating the parameters of a continuous-time process
using discrete observations at these frequencies seems important.

Another issue is how much model-specific dynamics complicate the estimation of deep
structural parameters. We address this question by comparing results of both the ezact and
the approximative estimation strategy to obtain the size and effects of the approximation
error for the neoclassical DSGE model. Note that for the exact approach (model I) the
choice of the model is irrelevant in the Monte Carlo experiments (all variables are observed),
whereas for the approximate approach the crucial parameter is the speed of reversion of
capital rewards. We use two scenarios, one has lower speed of reversion, ¢; = .5 (model I7),

and the other has relatively high speed of reversion, ¢; = 3 (model ]a).
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Starting with the stochastic AK model in (28), we simulate M = 5000 sample paths
each of length N = 580 at frequency A = 1/10. In the figures below we report the results
for (vs, va, A\, m, i, q) = (.025,.02,.8,.02,.01,.5), and set other parameters at realistic values
(p,ar,0,0) = (.03,.5,1,.05) for comparability with the neoclassical model. The number of
observations of each series and the parameters were chosen such that it roughly coincides with
available (monthly) aggregate US data. Given realized stochastic processes we then obtain
sample parameters (v, vg, A°,n°, u°, ¢°) for comparison with the estimates. Thereafter we
study the implications of sampling at quarterly frequency, A = 1/4, because often aggregate
data is not available at the monthly basis.

The results are summarized in Table 4 and Figures 1 and 3. In our experiments, the
likelihood-ratio test (8) rejects the null hypothesis of no jumps in 100% at the 1% significance
level. For comparison, simulating from the model without jumps, the likelihood-ratio test
rejects the null in only 2.4% at the 5% significance level. All parameter estimates remain
in a small interval around the sample values despite the fact that the data are sampled at
monthly frequency (A = 1/10). As one caveat, the arrival rate is on average estimated too
high, 1/M 32, A; = 0.8971 > 1/M 3., A = .7905. This phenomenon can be attributed to
the well-known identification problem that may arise if the sample size is small or moderate
(cf. Ait-Sahalia 2004). From Figure 1, the histogram of ML estimates is skewed right for the
arrival rate, 5\, and skewed left for the Brownian noise, 7. Occasionally the jumps cannot
be correctly disentangled from the Brownian noise. In such cases we obtain a too high
estimate for the arrival rate, tiny jump-sizes, and the estimate of the Brownian noise is too
small. Fortunately such problems of identification do not arise very often in practice. For
illustration, considering the .95 quantile of the estimates for ), this small sample bias and
the dispersion of A is reduced substantially (cf. Table 5).10

Another way of accommodating the identification problem is by fixing jump-sizes to
plausible values. Then, the problem of identification disappears and parameter estimates
are unbiased for correct values v and vy (cf. models Ia and I1b in Table 4 and Figure 4).
Hence, fixing the size of jumps, or equivalently, giving a prior: information, does not only
yield better finite sample properties of estimators in the sense of lower dispersion, but it also
removes identification problems that arise due to small sample sizes.

Comparing the exact and the approximate estimation strategy, we find small effects of the
approximation error on parameter estimates. As in Table 4 and Figures 2 and 3, the most
sensitive measures to approximations and therefore to different speed of reversion are the

dispersion of the estimates on the arrival rate A and the drift parameter 1. Other estimates

100ften, problems of identification can be detected in practice from an insignificant parameter estimate
along with an implausible high arrival rates and tiny jump sizes.
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are virtually unaffected by the different values of the speed of reversion. It is interesting to
note that for speed of reversion ¢; = .5 the approximate approach even slightly outperforms
the exact approach (compare models I and I7). It seems that the approximation error partly
counteracts the time-smoothing effect by ‘adding’ some persistence to the data. Thus we can
safely conclude that the equilibrium dynamics of our models do not necessarily complicate
the estimation of the structural parameters.

The results for A = 1/4 are in Tables 6 and 7 and Figures 5 and 6. The power of the test
in (8) reduces to 76.1% at the 5% significance level, while in the model without jumps the null
is (falsely) rejected in 4.5% at the same level of significance. As the histograms illustrate, the
dispersion increases substantially and the time-smoothing effect becomes severe. It seems
necessary to accommodate the identification problem by providing a prior: information, e.g.,
fixing the jump-sizes (models Ja and [Ib). Then parameter estimates remain in a reasonable
interval around sample values given that the data is sampled at a quarterly basis.

Summarizing the Monte Carlo experiments, jumps in macro-time series can be detected.
If the data were sampled at a monthly basis, the parameter estimates can simply be obtained
by maximizing the likelihood function implied by our hypothesis (1). It even works for data at
quarterly frequency when sufficient a priori information is provided. The general equilibrium

dynamics do not severely complicate the estimation of deep parameters of interest.

5 Empirical results

This section reports empirical estimates of our DSGE models. We search for non-normalities
in the form of jumps in aggregate US data from 1960:Q1 to 2008:Q4. Our sample length is
limited by the availability of data on monthly consumption. We employ the monthly index
of industrial production of major manufacturing industries (IP) from the Federal Reserve
statistical release (G.17), and NIPA data on real gross domestic product and consumption
expenditures from the Bureau of Economic Analysis (BEA), all seasonal adjusted.

Table 1 reports the MLE for the 6 parameters of the model for quarterly real GDP. Their
asymptotic standard errors and the likelihood-ratio test (8) are in parentheses. We obtain
similar parameter estimates for different DSGE models. The exact approach gives estimates
of the stochastic AK model with standard TFP (model I), the stochastic AK model with
stationary TFP for ¢; = .5 (model la) and ¢; = .7 (model Ib), the stochastic neoclassical
model with a linear-policy function for o = .5 (model /a) and o = .3 (model /b). Similarly,
the approrimate approach gives the estimates of the stochastic AK model with stationary
TFP for ¢; = .5, and the stochastic neoclassical model for a = .5 (both model II). Different
calibrations of ¢; or « only affect the MLE of the drift component p (not shown).
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Table 1: US quarterly real GDP from 1960:Q1 to 2008:Q3

Model Parameter estimates Value

~

Us Vq A 7) f q In(0)

eq. (19) I 00102 0.0109 1.0869 0.0079  0.0019  0.3450 706.7
(0.0013) (0.0009) (0.2012) (0.0005) (0.0011) (0.0733)  (14.63)

Io  0.0071  0.0095 25570  0.0051 0.0124  0.6343 705.5
(0.0003) (0.0003) (0.2224) (0.0003) (0.0008) (0.0285)  (17.98)

Ib 00084 0.0095 22307 0.0063 0.0192  0.5934 689.7
(0.0006) (0.0005) (0.2569) (0.0004) (0.0010) (0.0378)  (13.63)

eq. (20) II 00111  0.0141 1.4340 0.0088 0.0121  0.6688 663.3
(0.0009) (0.0009) (0.2111) (0.0005) (0.0013) (0.0468)  (15.68)

IIa 0.0150 0.0200 04313  0.0129 0.0166  0.5339 659.9
(0.0939) (0.0006) (0.0012) (0.0937)  (8.88)

Notes: This table reports the ML estimates for the following model specifications and calibrations: using the exact approach,
for the standard AK (model I, o = 1), the stationary AK (model Ia ¢1 = .5 and Ib ¢; = .7) and the neoclassical model with a
linear-policy function (model Ia o = .5 and Ib o = .3). Using the approzimate approach, it reports the ML estimates for the
stationary AK (model II, ¢1 = .5) and the neoclassical model (model II a = .5), as well as for fixed jump-size (model Ila).
Standard errors and likelihood-ratio tests (8) are in parentheses (A =1/4; N = 195).

As shown in the Monte Carlo experiments, with quarterly data it is difficult to disentangle
the jumps from the diffusion. Though the arrival rate seems far too high, the null hypothesis
of no jumps is rejected at the 5% significance level for all models (the critical value is 9.49).
To accommodate the identification problem (positive bias of A together with a negative bias
of Uy and v4), we constrain jump-sizes at larger values (model Ila), which loosely speaking
makes it less likely for an observation to be identified as a jump. It also accounts for the
fact that negative jumps are more pronounced on average. Nonetheless the null hypothesis
of no jumps is rejected at the 5% significance level (the critical values is 5.99).

Imposing the restriction vy = .015 (or vy = .02) means that the direct effect of one jump
on annual output growth in (18) is an increase (or drop) by 1.5 (or 2) percentage points.
The MLE gives the arrivals of such rare events every 1/ A =23 years, with probability of
G = 53% being a positive jump. For the stochastic AK model with standard TFP, relatively
more jumps are identified as being negative (model I), ¢ = 34.5%, with similar jump-sizes.
In contrast, the other models imply a tendency towards positive jumps, ¢ > 50%, and the
jump-size is more pronounced for negative rare events.

Table 2 shows the results for industrial production of major US manufacturing industries.
There are two main reasons for this approach. First, though industrial production contains

intermediate production and thus contributes only minor parts to the total output, the
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index does play an important role in assessing the state of the economy. Second, the index
is available at a monthly basis which makes it very attractive for estimating jumps. One
caveat is that industrial production is more volatile than output at the quarterly basis, and
could thus overemphasize the role of jumps in total output (cf. Tables 1 and 3).

For illustration, the MLE clearly suggests evidence of jumps in the data for the stochastic
AK model with standard TFP (model 7). In words, the point estimates suggest that jumps
in aggregate IP occur on average every 1/ A =1.64 years. With probability of ¢ = 21% it is
a positive jump equivalent to an annualized increase of /; = 2.38 percentage points, whereas
with probability of 79% it is a negative jump by 2.41 percentage points. Imposing the
parameter restriction p = (1 —e¥*q — e "4(1 — ¢))\ yields point estimates for the jump-sizes
v, = .0238 and 7y = .0241, the arrival rate \ = .5923, the volatility estimate 1 = .0277, the
implied drift component i = .0077, and the success probability ¢ = .2254. Statistically, we
cannot distinguish between both models at conventional significance levels. In other words,
the stochastic AK model with standard TFP is not rejected by the data.

To sum up, we find strong evidence for non-normalities in the form of jumps in aggregate
US series for real GDP and industrial production. From this point of view, we establish
that jumps in macroeconomics are not only caused by ‘low-probability disasters’ such as
armed conflicts or financial crises with calibrated arrival rate A = .017 causing a decline in
economic activity of vy = .15 as in Barro (2006, p.831). We find that jumps are a salient
feature for our class of continuous-time DSGE models. Even after deflating the arrival rates
of quarterly real GDP by a factor of 2.5 (which seems a conservative rule of thumb given
the results for IP data), the estimated arrivals are roughly at business cycle frequency with

jump-sizes only just higher than the standard deviation of the Normal innovations.

6 Conclusion

In this paper we formulate and solve continuous-time DSGE models where the economies can
be non-normal and/or non-linear. For reasonable parametric restrictions we obtain explicit
solutions. This feature allows us to derive the transition densities and thus the likelihood
function in closed form, which then is evaluated for estimation. Hence the continuous-time
formulation can make it simpler to compute and estimate the structural parameters.

In Monte Carlo experiments we show that the structural parameters of the DSGE models
can be recovered for plausible values and observation frequencies of macro-series. We propose
two estimation strategies. First, we use an ezact estimation approach exploiting equilibrium
conditions to filter model-specific dynamics from observed growth rates. Second, we propose

an approximate strategy which uses equilibrium moment conditions neglecting model-specific
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Table 2: US monthly IP (manufacturing sector) from 1960:01 to 2008:12

Model Parameter estimates Value

Us g A 7 f q In(0)

eq. (19) I 00238 00241 06110 0.0277 0.0058 0.2054  1907.5
(0.0029) (0.0011) (0.0815) (0.0004) (0.0015) (0.0558)  (46.31)

Ia  0.0161 0.0240 0.6844  0.0243  0.0178 04592  1979.8
(0.0032) (0.0008) (0.1725) (0.0004) (0.0019) (0.1218)  (58.16)

Ib 00157 0.0238 0.7218 0.0234 0.0240  0.4891 1996.2
(0.0024) (0.0007) (0.1589) (0.0004) (0.0018) (0.1006)  (64.76)

eq. (20) II 00154 0.0226 09477 0.0224 0.0186  0.4940  2002.3
(0.0015) (0.0007) (0.1440) (0.0004) (0.0014) (0.0676)  (76.94)

IIa 0.0200 0.0250 0.6256  0.0233  0.0201 0.3758  2001.4
(0.0633) (0.0003) (0.0009) (0.0520)  (75.13)

Notes: This table reports the ML estimates for the following model specifications and calibrations: using the ezact approach,
for the standard AK (model I, o = 1), the stationary AK (model Ia ¢1 = .5 and Ib ¢; = .7) and the neoclassical model with a
linear-policy function (model Ia o = .5 and Ib o = .3). Using the approzimate approach, it reports the ML estimates for the
stationary AK (model II, ¢1 = .5) and the neoclassical model (model II a = .5), as well as for fixed jump-size (model Ila).
Standard errors and likelihood-ratio tests (8) are in parentheses (A = 1/12; N = 588; N = 586 for the ezact approach).

Table 3: US quarterly IP (manufacturing sector) from 1960:Q1 to 2008:Q4

Model Parameter estimates Value

Us g A 7 f q In(0)

eq. (19) I 00207 0.0290 0.6953 0.0199  0.0038  0.4207 554.2
(0.0060) (0.0032) (0.2995) (0.0015) (0.0035) (0.1957)  (32.01)

Io  0.0154 00288 15202 0.0168 0.0089  0.6333 545.9
(0.0037) (0.0017) (0.7012) (0.0019) (0.0063) (0.1484)  (33.87)

Ib 00164 0.0276 1.6823 0.0156 0.0179  0.5937 540.9
(0.0028) (0.0011) (0.4611) (0.0014) (0.0040) (0.0939)  (35.57)

eq. (20) II  0.0201 0.0282 1.5624 0.0160 0.0217  0.5043 531.9
(0.0017) (0.0010) (0.2112) (0.0009) (0.0024) (0.0549)  (40.57)

IIa 0.0250 0.0350 0.7777  0.0218  0.0255  0.3747 527.7
(0.1125) (0.0010) (0.0023) (0.0665)  (32.31)

Notes: This table reports the ML estimates for the following model specifications and calibrations: using the ezact approach,
for the standard AK (model I, o = 1), the stationary AK (model Ia ¢1 = .5 and Ib ¢; = .7) and the neoclassical model with a
linear-policy function (model Ia o = .5 and Ib o = .3). Using the approzimate approach, it reports the ML estimates for the
stationary AK (model I, ¢1 = .5) and the neoclassical model (model II a = .5), as well as for fixed jump-size (model Ila).
Standard errors and likelihood-ratio tests (8) are in parentheses (A = 1/4; N = 196; N = 195 for the ezact approach).
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dynamics. Given our closed-form solutions we can address the effect of the approximation
error on the parameter estimates. In our experiments, the exact method does not necessarily
improve on the accuracy of estimates if the sample size is small or moderate.

In the empirical part of this paper we estimate our DSGE models using likelihood-based
inference. We find strong evidence of non-normalities in the form of jumps in aggregate US
data. Because of the availability of closed-form transition densities, standard likelihood-ratio
tests are used to test for the presence of jumps. The null hypothesis of no jumps is rejected
at conventional levels of significance for quarterly and monthly frequency of observation.
Estimated jumps are found to be much more frequent and smaller than usually calibrated
in models of rare disasters (as in Barro 2006).

There is a number of interesting and promising directions for future research projects.
From an empirical perspective, an extension of our setup to time-varying volatility could
be very useful to account for other forms of non-normalities which have been found in the
literature (Ferndndez-Villaverde and Rubio-Ramirez 2007, Justiniano and Primiceri 2008).
From an econometric perspective, estimating continuous-time DSGE in macroeconomics
without closed-form solutions remains a major challenge, which could be tackled, e.g., using

closed-form sequences of approximations to the transition density (Ait-Sahalia 2002).

A Appendix

A.1 The Bellman equation

Following Bellman’s idea, the optimal program (15) requires (Chang 1988, Sennewald 2007)

1
pV(aO, AO) = max {U(Co> + %Eod‘/(&(), Ao)} . (36)
co
Because the stochastic processes By, N; and J; are independent, It6’s formula yields

dV = Vada,t + VA(dAt - (eXp(Jt) - ].) At_dNt) -+ %VAAn(At)th -+ (V(at, At) - V(at, At—)) dNt
Va((rt — (S)G/t + Wy — Ct)dt + VA/L(At)dt + VAT](At)dBt + %VAA??(At)th
-+ (V(at, eXp(Jt)At,) — V(at, At,)) dNt,

where we used A; = exp(J;)A;_, that is the level immediately after a jump. By construction
a; = a4 as for any continuous-state process. Apply now the operator Fy(-) to the integral
equation, and use the property of the It stochastic integral, Ej f(f f(s, Bs)dBs = 0, and the
martingale property of fot f (s, Ng)dNs— A f(f f (s, Ng)ds. We insert the resulting expression
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for EydV (ag, Ap) into the Bellman equation (36) and obtain

oV (as, Ay) = max {uler) + Va((re = 0)as + we — ¢¢) + Vap(Ayr)
+2Vaan(A)* + (¢V (ar, € Ay) + (1 — @)V (ag, e "0 Ay) — V(ag, A)) A} (37)

for any ¢ € [0, 00), where we inserted E,(-) as the expectation operator with respect to J,
Ej{V(ay,exp(J) A=)} = qV(a, e Ain) + (1 — @)V (ag, e A ). (38)

Because (37) is a necessary condition for optimality, we obtain the first-order condition.

A.2 Proof of Proposition 3.1

The idea of this proof is to show that with a candidate solution, both the maximized Bellman
equation (17), and the first-order condition (16) are fulfilled (Chang 1988, Sennewald 2007).
We start with an educated guess of the value function, and then derive conditions under

which it actually is the unique solution to the control problem
V(ay, Ay) = Cilna; + f(Ay). (39)

From the first-order condition (16), for the case of logarithmic utility (¢ = 1), optimal

consumption is a constant fraction of wealth,
c'=Cua;t & co=Clla.
Now use the maximized Bellman equation (17), and insert the solution candidate

PV (as, Ar) = Inc(ag) + Va((re — 0)ar — clar)) + VapAr + 3VaaAin® + E; {f(Ar) — f(A)} A
& pCilna;, = Ina;,—InCy+ Cia; (A — 8)ay — Crlay) + fapd; + %fAAAtznz — pf(Ay)
+E;{f(A) — f(A)} A

Choose pf(Ay) = CrA; + fapdAi + 5 faaAin® + E;{f(Ar) — f(A-)}A —InCy — C10 — 1, and
the equation simplifies to pC; Ina; = Ina;. This expression indeed is a solution for C; = 1/p.

Because the economy has L representative households, C; = L¢; = CflLat = pK;.
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A.3 Proof of Proposition 3.4

The idea of this proof follows Section A.2. An educated guess of the value function is

C alfa
V(at,At) = 11 !

+ f(A). (40)

— 0

From (16), optimal consumption per effective worker is a constant fraction of wealth,
0 — C.a° _ m~—1/c
¢; " = Cia &S o =C, M.

Now use the maximized Bellman equation (17), the property of the Cobb-Douglas technology,
Fyg = A K L' and Fp, = (1—a) A, K L™, together with the transformation K; = La,,
and insert the solution candidate,

1—0o

C 7 gl
oV (ay, A) = ﬁ + Va((re — 8)ay + wy — ca)) + Vap(Ar) + 2Vaan(A4,)?
—|—EJ (V(at, At) — V(at, At,)) )\
C 1-0o C_ltTU 1-0o /e
& fa_ta +g(A) = % + Cra; (@At = )ay + (1 — a) Aa® — C7Va,)
(C_ltTU -0 e
_ % + Cra;” (Aa® — Say — C;Vay),

where g(A;) = pf(Ar) — fap(Ar) — 3faan(A)® — E; {f(Ar) — f(A-)} A, When imposing
the condition a = o and g(A;) = C; A, the equation can be simplified to

1—0o

Clal—a (C*Tall—a . o 1-g
pr— g(A) = T+ Ci(A — da) T~ C e
1 1/ 1—0)6
& pa; 7 = o0C7a; 7 —(1—0)da;° = C Vo _ —'0+( o) ,

g

which finally proves that ¢ = (Cl_l/ 7.

A.4 Proof of Proposition 3.5

The idea of this proof follows Section A.2. An educated guess of the value function is

l—ao

1—ao

Viay, A) = A7 (41)

From (16), optimal consumption per effective worker is a constant fraction of income,
—0 __ (C —ag p-o _ (Cfl/o' @A
¢;” = Ca; ; & =C, ""aiA,.
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Now use the maximized Bellman equation (17), the property of the Cobb-Douglas technology,
Fyg = aA K L and Fp, = (1—a) A, K L™, together with the transformation K; = La,,

and insert the solution candidate,

(Cflegaloc—ozUAl—a
- 1 t_ o : + ‘/a((rt - 6)at + Wy — C(at, At)) + VA,LL(At) —+ %VAAT](At)2

+(Ej{exp(—aJy)} —1)Cia; /(1 — ao)A; 7\

pVias, Ay) =

which is equivalent to

1-0o
Clal—aa . C*Taa—aJAl—J o Ao N N 1o o
1 _tag Ao = A 1 t_ - L+ Cia; " A7 (aAad — da; + (1 — a)Ajad — C; / ag Ay)
(ClaifaaA;ofl lO’(]_ + U)Cla%fcmA;072
- A . Ap)?
o [ — oo p(A) + 1~ oo n(Ar)
+ (Ej{exp(—aJy)} — 1) Cia; * AN/ (1 — ao).
Collecting terms gives
(Clatlfaa - ClatlfaaAthfl 10,(1 + O_)Cla%faaA;072
A Ay) — 2 A)? =
l—ac " o 1—-ao pA) 1—-aco 1)
_1-0o
(Cl 7 a?_ao-Atl_U _1-0c

+ Craf o7 AL — 6Cial AT — € 7 ad 0T AL
+ (Ej{exp(—aJ;)} —1)Cia; * AN/ (1 — ao)
& pt op(A) A — 3o(1+ (AN /A2 + (1 — a0)6 — (B fexp(—o)} — 1) A =

(1—0o+ UCIUJ) 11—_a0

l1—0

a?ilAt

which has a solution for (Cl_l/a = (o0 —1)/o and
p=—op(A) /A + 50(L+0)n(A)*/A} — (1= a0)d + (B {exp(=o/i)} = 1) A (42)
The condition implicitly restricts p(A;) and o(A;) to the set of functions
p(A) /A — (1 +o)n(A)?/A} = peR.

For reasonable parametric calibrations equation (42) is satisfied. Though being a special case,
a Keynesian consumption function could be an admissible policy function for the neoclassical

model (cf. also Chang 1988). Its plausibility is an empirical question.
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A.5 Boundedness of life-time utility in the neoclassical model

For our solutions the integral (12) has to exist. This section illustrates how to obtain the
boundedness condition for Proposition 3.4. Other solutions follow a similar approach. Given
the parameter restriction @ = o, equation (11) simplifies to dK; = (AKX L™ — (§+¢) K, )dt

which now can be solved explicitly. Using the transformation c¢; % = (¢K,/L)'~?,

de;7 = (1—a)K; ¢ (AKY — (64 ¢) K/ L' *)dt
= (1—a)(A'™ = (6 + ¢)¢i "),

which has the solution ¢; 7 = e~ 1=+ (177 4 (1 — a)p! @ fot e1=0+)s A ds). Passing

the solution to the integral (12) we may write life-time utility as

Uy = fOOO e pt—(1-a)(5+o)t (C(l)—a/(l . U) 4 ¢1fa f(f e(lfa)(5+¢>)sEO(As>d8> dt.

Now insert Ey(A;) = AgelrtAleate ™ (1=a)=1) "and collect terms to obtain

0o 1—o 1—a (1—a)(0+¢)t+(ptA(e?sgte"d(1—q)—1) )t
Up = / o Pl—(1-a) ()t ( &) ¢! Ag (e ( ) 1)> dt,
0

o (I-a)0td) tutregren(ig 1)

which gives the boundedness condition p > pu+ A(e” g+ e "4(1 — ¢) — 1). By definition, this
integral is V' (ag, Ag) in (40), which implies f(Ag) where f, is a constant, and fas = 0.

A.6 Moments of capital rewards in the neoclassical model

In a seminal paper Merton (1975) shows that the output-to-capital ratio in the Solow model
under Normal uncertainty has a Gamma distribution. Consider the output-to-capital ratio
allowing for Poisson uncertainty. Suppose that r; has a limiting distribution, such that the

sequence {r:}2, converges in distribution to a random variable r,
re 2 r where 0<r, <oo. (43)
In the paper we show that (31) for the standard TFP process (30) can be written as
dry = cry(co —ry) dt + nrdB; + (exp(Jy) — 1)ri—dN;. (44)
Because the SDE is a reducible geometric-reverting jump-diffusion process, it can be solved

explicitly. Due to the non-linearity, obtaining the moments directly from the solution does
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not seem promising. We use the smooth transformation Inr,
Inr, 2 Inr where —oo<Inr <oo (45)
to obtain d1lnr, = ¢1(co — ry)dt — %nzdt + ndB; + J;dN; which has the solution
Inr, —Inr, = ftz (ci(ca —15) — 30°) ds + (B, — By) + fti J;dN;.

Employing the property that In7; and Inr;_a share the same asymptotic mean as from (45),

t

0 = (0102 — %772) A—¢ tlim Ey(rs)ds + ytlim Eo(Ny — Ni_a)
t

= (e — i +vA) A —¢ lim Eo(rs)ds

t—o0 —A

c1ey — 307 + VA

= E(r) = tILI?oEO(Tt): (46)

&1
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Figure 1: Finite sample distribution of estimation errors (A = 1/10, model I)
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Notes: These figures report histograms of differences of ML estimates and sample parameters of M = 5000 Monte Carlo
simulations for v, vg4, A, , g, and g (column by column, from top left to bottom right), for the ezact approach (19) (sample
parameters and ML estimates are summarized in Table 4, model I).
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Figure 2: Finite sample distribution of estimation errors (A = 1/10, model II)
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Notes: These figures report histograms of differences of ML estimates and sample parameters of M = 5000 Monte Carlo
simulations for vs, vg4, A, 1, i, and ¢ (column by column, from top left to bottom right), for the approzimative approach (20)
(sample parameters and ML estimates are summarized in Table 4, model IT).

28



Figure 3: Finite sample distribution of estimation errors (A = 1/10, model Ia)
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Notes: These figures report histograms of differences of ML estimates and sample parameters of M = 5000 Monte Carlo
simulations for vs, vg4, A, 1, i, and ¢ (column by column, from top left to bottom right), for the approzimative approach (20)
(sample parameters and ML estimates are summarized in Table 4, model IIa).
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Figure 4: Finite sample distribution of estimation errors (A = 1/10, model la)
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Notes: These figures report histograms of differences of ML estimates and sample parameters of M = 5000 Monte Carlo
simulations (fixed jump-size), Us, Vg4, A, 1, 1, and ¢ (column by column, from top left to bottom right), for the ezact approach
(19) (sample parameters and ML estimates are summarized in Table 4, model Ia).
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Figure 5: Finite sample distribution of estimation errors (A = 1/4, model 1)
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Notes: These figures report histograms of differences of ML estimates and sample parameters of M = 5000 Monte Carlo
simulations for v, vg4, A, , g, and g (column by column, from top left to bottom right), for the ezact approach (19) (sample
parameters and ML estimates are summarized in Table 6, model I).
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Figure 6: Finite sample distribution of estimation errors (A = 1/4, model Ia)
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Notes: These figures report histograms of differences of ML estimates and sample parameters of M = 5000 Monte Carlo
simulations (fixed jump-size), Us, Vg4, A, 1, 1, and ¢ (column by column, from top left to bottom right), for the ezact approach
(19) (sample parameters and ML estimates are summarized in Table 6, model Ia).
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Table 4: Comparison of Monte Carlo estimates and sample averages (A = 1/10)

Model Parameter estimates averages
2 a A i j q
Sample 0.0250  0.0200  0.7905  0.0200  0.0100  0.5011

(0.0000) (0.0000) (0.1193) (0.0002) (0.0027) (0.0749)

eq. (19) I 00249 00198 0.8971  0.0198  0.0106  0.4887
(0.0020) (0.0031) (0.5856) (0.0010) (0.0063) (0.1151)

Io  0.0250 0.0200 0.7993  0.0200 0.0100  0.5028
(0.1455)  (0.0008) (0.0056) (0.0908)

eq. (20) II  0.0249  0.0198  0.8929  0.0198  0.0105  0.4890
(0.0020) (0.0031) (0.4937) (0.0010) (0.0049) (0.1151)

IIa 0.0247 00197 0.9017 0.0197 0.0105  0.4890
(0.0020) (0.0030) (0.6788) (0.0010) (0.0118) (0.1158)

IIb  0.0250  0.0200 0.7896  0.0200  0.0099  0.5045
(0.1451)  (0.0008) (0.0114) (0.0916)

Notes: This table reports the averages of M = 5000 Monte Carlo simulations. It compares the mean of ML estimates to
sample averages for the following model specifications: using the ezact approach (model I) and for fixed jump-size (model Ia);
using the approzimate approach for different levels of the speed of reversion (model II, ¢1 = .5 and Ila, ¢; = 3) and for fixed
jump-size (model IIb, ¢; = 3). Sampling distribution standard errors are in parentheses (A = 1/10; N = 580).

Table 5: Comparison of Monte Carlo estimates and sample averages (.95 quantile, A = 1/10)

Model Parameter estimates averages
2 a A i j q
Sample 0.0250  0.0200  0.7905  0.0200  0.0100  0.5011

(0.0000) (0.0000) (0.1193) (0.0002) (0.0027) (0.0749)

eq. (19) I 00249 0.0201 0.8318 0.0198 0.0102  0.4987
(0.0020) (0.0027) (0.1784) (0.0009) (0.0057) (0.1057)

eq. (20) II  0.0250 0.0202 0.8320 0.0199 0.0101  0.4987
(0.0020) (0.0027) (0.1787) (0.0009) (0.0042) (0.1063)

Ila 0.0248  0.0200 0.8312 0.0198  0.0102  0.4989
(0.0020) (0.0026) (0.1800) (0.0009) (0.0114) (0.1064)

Notes: This table reports the averages of the .95 quantile of M = 5000 Monte Carlo simulations ordered by ATt compares
averages of ML estimates for the following model specifications: using the exact approach (model I); using the approzimate
approach for different levels of the speed of reversion (model II, ¢; = .5 and Ila, ¢; = 3). Sampling distribution standard errors
are in parentheses (A = 1/10; N = 580).
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Table 6: Comparison of Monte Carlo estimates and sample averages (A = 1/4)

Model Parameter estimates averages
2 a A i j q
Sample 0.0250  0.0200  0.7905  0.0200  0.0100  0.5011

(0.0000) (0.0000) (0.1193) (0.0002) (0.0027) (0.0749)

eq. (19) I 00248 0.0197 25648 0.0168 0.0148  0.4733
(0.0082) (0.0101) (3.0406) (0.0050) (0.0219) (0.2810)

Io  0.0250 0.0200 0.7744  0.0201  0.0101  0.5258
(0.2981) (0.0025) (0.0070) (0.1980)

eqg. (20) II  0.0250 0.0196 2.5817  0.0169  0.0147  0.4690
(0.0084) (0.0102) (3.0280) (0.0051) (0.0216) (0.2758)

Ila 00244 00193 2.6364 0.0167 0.0146  0.4735
(0.0083) (0.0103) (3.0831) (0.0050) (0.0245) (0.2857)

IIb  0.0250 0.0200 0.7338  0.0201  0.0100  0.5325
(0.2927) (0.0025) (0.0121) (0.2039)

Notes: This table reports the averages of M = 5000 Monte Carlo simulations. It compares the mean of ML estimates to
sample averages for the following model specifications: using the ezact approach (model I) and for fixed jump-size (model Ia);
using the approzimate approach for different levels of the speed of reversion (model II, ¢1 = .5 and Ila, ¢; = 3) and for fixed
jump-size (model IIb, ¢ = 3). Sampling distribution standard errors are in parentheses (A = 1/4; N = 232).

Table 7: Comparison of Monte Carlo estimates and sample averages (.95 quantile, A = 1/4)

Model Parameter estimates averages
2 a A i j q
Sample 0.0250  0.0200  0.7905  0.0200  0.0100  0.5011

(0.0000) (0.0000) (0.1193) (0.0002) (0.0027) (0.0749)

eq. (19) I 00249 00202 21050 0.0172 0.0133  0.4856
(0.0081) (0.0099) (2.3332) (0.0047) (0.0177) (0.2687)

eq. (20) II 00251 0.0201 21231 0.0173 0.0133  0.4813
(0.0083) (0.0099) (2.3199) (0.0048) (0.0171) (0.2631)

Ila 0.0245 00198 21790 0.0170 0.0131  0.4861
(0.0082) (0.0101) (2.4013) (0.0048) (0.0208) (0.2737)

Notes: This table reports the averages of the .95 quantile of M = 5000 Monte Carlo simulations ordered by ATt compares
averages of ML estimates for the following model specifications: using the exact approach (model I); using the approzimate
approach for different levels of the speed of reversion (model II, ¢; = .5 and Ila, ¢; = 3). Sampling distribution standard errors
are in parentheses (A = 1/4; N = 232).
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