
Identification and estimation of heterogeneous agent

models: A likelihood approach∗

Juan Carlos Parra-Alvarez†(a,b), Olaf Posch(b,c) and Mu-Chun Wang(c)

(a)Aarhus University, (b)CREATES, (c)Hamburg University

October 2017

Abstract

In this paper, we study the statistical properties of heterogeneous agent models with in-
complete markets. Using a Bewley-Hugget-Aiyagari model we compute the equilibrium density
function of wealth and show how it can be used for likelihood inference. We investigate the
identifiability of the model parameters based on data representing a large cross-section of indi-
vidual wealth. We also study the finite sample properties of the maximum likelihood estimator
using Monte Carlo experiments. Our results suggest that while the parameters related to the
household’s preferences can be correctly identified and accurately estimated, the parameters
associated with the supply side of the economy cannot be separately identified leading to in-
ferential problems that persist even in large samples. In the presence of partially identification
problems, we show that an empirical strategy based on fixing the value of one of the troublesome
parameters allows us to pin down the other unidentified parameter without compromising the
estimation of the remaining parameters of the model. An empirical illustration of our maxi-
mum likelihood framework using the 2013 SCF data for the U.S. confirms the results from our
identification experiments.

Keywords: Heterogeneous agent models, Continuous-time, Fokker-Planck equations, Identi-
fication, Maximum likelihood.

JEL classification : C10, C13, C63, E21, E24.
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1 Introduction

Heterogeneous agent models have become an extensively used tool in macroeconomics for the study

and evaluation of the welfare implications and desirability of business cycle stabilization policies.

They have also been used to address questions related to social security reforms, the precautionary

savings behavior of agents, employment mobility and wealth inequality. A comprehensive review

on the developments made in the field during the last two decades can be found in Ŕıos-Rull (1995,

2001) and Heathcote et al. (2009). More recently, they have also started to be used for the study of

monetary and fiscal policies, and their distributional implications (see Kaplan et al. (2016), Ozkan

et al. (2016) and Wong (2016)).

Currently, the main workhorse in the heterogeneous agent literature is based on the contribu-

tions of Bewley (Undated), Huggett (1993) and Aiyagari (1994). Their theories are motivated by

the empirical observation that individual earnings, savings, wealth and labor exhibit much larger

fluctuations over time than per-capita averages, and accordingly significant individual mobility is

hidden within the cross-sectional distributions. These ideas have been formalized with the use of

dynamic and stochastic general equilibrium models of a large number of rational consumers that are

subject to idiosyncratic income fluctuations against which they cannot fully insure due to market

incompleteness.

To date, calibration is the standard methodology used to examine the quantitative properties of

these models. Kydland and Prescott (1982) introduced calibration into macroeconomics with subse-

quent developments made by Prescott (1986), Cooley and Prescott (1995) and Gomme and Rupert

(2007). This procedure fixes the value of the model parameters to those encountered in external

sources, or to values such that the model generates moments that match certain observed aggregate

macroeconomic statistics. Nonetheless, and despite being a very illustrative methodology for the

study of a model dynamics, calibration does not allow us to make statements regarding the uncer-

tainty surrounding these values, their statistical significance and on how well the models fit the data.

On the other hand, the use of econometric methods provide some important advantages over

the calibration approach by allowing: (i) to impose on the data the restrictions arising from the

economic theory associated with a particular model; (ii) to assess the uncertainty surrounding the

parameter values which ultimately provides a framework for inference and hypothesis testing, (iii)

the use of standard tools for model selection and evaluation. However, the use of econometric

techniques seems novel for the type of heterogeneous agents models consider in this paper. Some

notable exceptions include the recent contributions by Benhabib et al. (2015), Abbott et al. (2016)

and Luo and Mongey (2017) where models without aggregate shocks are estimated using limited

information methods, and those of Winberry (2016), Mongey and Williams (2017) and Williams

(2017) where models with aggregate shocks are solved using the methodology proposed in Reiter
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(2009) and then estimated using full information methods.

One possible explanation of why heterogeneous agent models have just recently started to be

statistically estimated is that their solution imposes a computational burden that makes any econo-

metric procedure infeasible. It is a well known fact that the numerical approximation of the density

function of the state variables of the model increases considerably the computing time of the model’s

solution. However, Achdou et al. (2014) and Achdou et al. (2017) have made important advances in

the solution of continuous-time heterogeneous agent models that have proven successful in reducing

this computational complexities enabling the implementation of standard econometric methods.

The first contribution of this paper is to introduce a simple framework to estimate the struc-

tural parameters of heterogeneous agent models by exploiting the information content in the cross-

sectional distribution of wealth. Our approach relies on the ability to compute the model’s implied

stationary probability density function of wealth which allows us to build the likelihood function

of the model. Since the density function encompasses all the restrictions imposed by the economic

model, the maximum likelihood estimator belongs to the class of full information estimators.

In general, the computation of the probability density function of wealth in heterogeneous agent

models is not straightforward as it turns out to be a complicated endogenous and non-linear object

that usually has to be numerically approximated. However, Bayer and Wälde (2010a,b, 2011, 2013),

Achdou et al. (2014) and Gabaix et al. (2016) have recently suggested the use of Fokker-Planck

equations for the derivation and analysis of endogenous distributions in macroeconomics1. These

partial differential equations describe the entire dynamics of any probability density function in a

very general manner without the need to impose any particular functional form. When combined

with the standard Hamilton-Jacobi-Bellman equation that describes the optimal behavior of eco-

nomic agents, they form a system of coupled partial differential equations that can be numerically

solved with high degree of accuracy and efficiency on the entire state-space of the model using the

finite difference methods described in Candler (1999) and Achdou et al. (2017).

A condition for the maximum likelihood estimator to deliver consistent estimates of the model

parameters, and a valid asymptotic inference is identification (see Newey and McFadden (1986)).

Roughly speaking, identification refers to the fact that the likelihood function must have a unique

maximum at the true parameter vector and at the same time display enough curvature in all of

its dimensions. Lack of identification leads to misleading statistical inference that may suggest the

existence of some features in the data that are actually absent. Therefore, it is important to verify

the identification condition prior to the application of any estimation strategy. The recent contri-

butions of Canova and Sala (2009), Iskrev (2010), Komunjer and Ng (2011) and Ŕıos-Rull et al.

(2012) point out in that direction by providing tools that can be used to study the identifiability

1The Fokker-Planck equations are also often called Kolmogorov Forward equations and both terms are equally
used in the economic literature.
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of parameters in structural macroeconomic models.

The second contribution of this paper is to investigate whether it is possible, and to what extent,

to (locally) identify the structural parameters of heterogeneous agent models in a likelihood-based

framework using a large cross-sectional sample of individual wealth. Given that the mapping be-

tween the deep parameters of the model and the likelihood function is highly nonlinear and not

available in closed form, we investigate the identification power of the maximum likelihood esti-

mator in an indirect way by using some of the simulation and graphical diagnostics proposed in

Canova and Sala (2009).

To illustrate our approach, Section 2 introduces a continuous-time version of an otherwise stan-

dard Bewley-Hugget-Aiyagari model in which a large number of households face idiosyncratic and

uninsurable income risk in the form of exogenous shocks to their productivity. In the context of

this prototype economy, we then characterize and solve for the stationary competitive equilibrium

which equip us with a time-invariant distribution of wealth that can be used for estimation and/or

identification analysis. In Section 3 we show how to use this time-invariant density of wealth to

compute the model’s likelihood function. It also introduces the concept of identification within our

maximum likelihood framework, and summarizes the different types of identification issues that

could potentially arise in heterogeneous agent models.

Section 4 studies the behavior of the model’s implied density function of wealth when the sam-

pling process is known. We are specially interested in investigating the ability to identify the

population density function along different dimensions of the parameter space. Since the analysis

we conduct is independent of the data, we call it population identification analysis. Section 5

examines the finite sample properties of the maximum likelihood estimator using a Monte Carlo

experiment. We pay particular attention to the potential biases and the precision of the estimates

in different dimensions of the parameter space, and their implications for some of the model implied

steady state macroeconomic aggregates.

A standard practice in macroeconomics when identification problems emerge is to fix the pa-

rameters that are believed to be unidentifiable to arbitrary values, and estimate the remaining ones.

Section 6 investigates the consequences of following such an strategy. Section 7 provides an empirical

illustration of our proposed framework by estimating the parameters of a Bewley-Aiyagari-Hugget

model for the U.S. using the wealth data reported in the 2013 Survey of Consumer Finances.

Section 8 concludes.

2 A prototypical heterogeneous agent model

For our study we consider a prototypical heterogeneous agent model á la Bewley-Hugget-Aiyagari

set up in continuous-time following Achdou et al. (2017). In our economy there is no aggregate

uncertainty and we assume that all aggregate variables are in their steady state, while at the in-
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dividual level households face idiosyncratic uninsurable risk and variables change over time in a

stochastic way.

2.1 Households

Consider an economy with a continuum of unit mass of infinitely lived households where deci-

sions are made continuously in time. Each household consists of one agent, and we will speak of

households and agents interchangeably. Household i, with i ∈ (0, 1), has standard preferences over

streams of consumption, ct, defined by:

U0 ≡ E0

∫ ∞
0

e−ρtu(ct)dt, u′ > 0, u′′ < 0, (1)

where ρ > 0 is the subjective discount rate, and where the instantaneous utility function is given by:

u (ct) =

{
c1−γt
1−γ for γ 6= 1

log (ct) for γ = 1,

where γ > 0 denotes the coefficient of relative risk aversion. At time t = 0, the agent knows his

initial wealth and income levels and chooses the optimal path of consumption {ct}∞t=0 subject to:

dat = (rat + wet − ct)dt, (a0, e0) ∈ [a,∞)× E , (2)

where at denotes the household’s financial wealth per unit of time and r the interest rate. Wealth

increases if capital income, rat, plus labor income, wet, exceeds consumption, ct. At every instant

of time, households face uninsurable idiosyncratic and exogenous shocks to their endowment of effi-

ciency labor units, et, making their labor income stochastic (see Castañeda et al. (2003)); w denotes

the wage rate per efficiency unit which is the same across households and determined in general

equilibrium together with the interest rate2. The fact that there are no private insurance markets for

the household specific endowment shock can be explained, for example, by the existence of private

information on the employee side, like his real ability, that could give rise to adverse selection and

moral hazard problems. This would prevent private firms to provide insurance against income fluc-

tuations. However, the wealth accumulation process in Equation (2) creates a mechanism used by

agents to self-insure themselves against labor market shocks and allows for consumption smoothing.

Following Huggett (1993), the endowment of efficiency units can be either high, eh, or low,

el. The endowment process follows a continuous-time Markov Chain with state space E = {eh, el}
described by:

det = −∆edq1,t + ∆edq2,t, ∆e ≡ eh − el and e0 ∈ E . (3)

The Poisson process q1,t counts the frequency with which an agent moves from a high to a

low efficiency level, while the Poisson process q2,t counts how often it moves from a low to a high

2Alternatively, the efficiency levels can be understood as productivity shocks following Heer and Trede (2003).
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level. As an individual cannot move to a particular efficiency level while being in that same level,

the arrival rates of both stochastic processes are state dependent. Let φ1 (et) ≥ 0 and φ2 (et) ≥ 0

denote the demotion and promotion rates respectively, with:

φ1(et) =

{
φhl et = eh
0 et = el

and

φ2(et) =

{
0 et = eh
φlh et = el.

Households in this economy cannot run their wealth below a, where an ≤ a ≤ 0, and an = −wel/r
defines the natural borrowing constraint implied by the non-negativity of consumption. The effects

of different values of a for the model implications are studied in Aiyagari (1994).

2.2 Production possibilities and macroeconomic identity

Aggregate output in this economy, Y , is produced by firms owned by the households. They com-

bine aggregate capital, K, and aggregate labor, L, through a constant return to scale production

function:

F (K,L) = KαL1−α, α ∈ (0, 1) .

in order to maximize their profits.

We further assume that the aggregate capital stock in the economy depreciates at a constant

rate, δ ∈ [0, 1]. Since our focus is on the steady state, all the investment decisions in the economy

are exclusively directed towards replacing any depreciated capital. Therefore the macroeconomic

identity:

Y = C + δK (4)

holds at every instant of time, where C denotes aggregate consumption, and δK aggregate invest-

ment. We have removed the temporal subscript t from all aggregate variables to indicate that the

economy is in a stationary equilibrium.

2.3 Equilibrium

In this economy, households face uncertainty regarding their future labor efficiency. This makes

their labor income and wealth also uncertain. Hence, the state of the economy at instant t is

characterized by the wealth-efficiency process (at, et) ∈ [a,∞) × E defined on a probability space

(Ω,F , G) with associated joint density function g (at, et, t). In a stationary equilibrium this density

is independent of time and thus it simplifies to g (at, et).

As shown in Appendix A, for any given values of r and w, the optimal behavior of each of the

households in the economy can be represented recursively from the perspective of time t by the
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Hamilton-Jacobi-Bellman equation (HJB):

ρV (at, et) = max
ct∈R+

{
u(ct) + Va(at, et)(rat + wet − ct)

+(V (at, el)− V (at, eh))φ1(et) + (V (at, eh)− V (at, el))φ2(et)
}
, (5)

where V (at, et) denotes the value function of the agent. The first-order condition for an interior

solution reads:

u′ (ct) = Va (at, et) (6)

for any t ∈ [0,∞), making optimal consumption a function only of the states and independent of

time, ct = c(at, et). Equation (6) implies that in equilibrium, the instantaneous increase in utility

due to marginally consuming more must be exactly equal to the increase in overall utility due to

an additional unit of wealth.

Due to the state dependence of the arrival rates only one Poisson process will be active for each

of the values in E . This leads to a bivariate system of maximized HJB equations:

ρV (at, el) = u(c(at, et)) + Va(at, el)(rat + wel − c(at, et)) + (V (at, eh)− V (at, el))φlh, (7)

ρV (at, eh) = u(c(at, et)) + Va(at, eh)(rat + weh − c(at, et)) + (V (at, el)− V (at, eh))φhl. (8)

An interesting feature of our continuous-time setup as opposed to the discrete-time case, is that

Equation (6) holds for all at > a since the borrowing constraint never binds in the interior of the

state space. Therefore, the system of equations formed by (7) and (8) does not get affected by the

existence of the inequality constraint at ≥ a, and instead gives rise to the following state-constraint

boundary condition (see Achdou et al. (2017)):

Va (a, et) ≥ u′ (ra+ wet) . (9)

It can be shown that Equation (9) implies that ra+wet− c(a, et) ≥ 0 and therefore the borrowing

constraint is never violated.

On the other hand, the representative firm rents capital and labor from the household in per-

fectly competitive markets. Hence, in equilibrium the production factors are paid their respective

marginal products:

r = αKα−1L1−α − δ and w = (1− α)KαL−α, (10)

where the steady state aggregate capital is obtained by aggregating the wealth held by every type of

household, and similarly, the steady state aggregate labor is obtained by aggregating their efficiency

labor units:

K =
∑

et∈{el,eh}

∞∫
a

atg (at, et) dat, (11)
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L =
∑

et∈{el,eh}

∞∫
a

etg (at, et) dat. (12)

Equations (11) and (12) provide the link between the dynamics and randomness that occurs at the

micro level with the deterministic behavior at the macro level.

A stationary equilibrium is defined as a situation where the aggregate variables and prices in

the economy are constant, the joint distribution of wealth and efficiency units is time-invariant,

and all markets clear. More specifically, while the distribution of wealth is constant for both the

low and high efficient workers and the number of low and high efficient workers is also constant,

the households are not characterized by constant wealth levels and efficiency status over time.

Definition 2.1 (Competitive stationary equilibrium) A competitive stationary equilibrium is

a pair of value functions V (at, el) and V (at, eh), individual policy functions for consumption

c (at, el) and c (at, eh), a time-invariant density of the state variables g (at, el) and g (at, eh), con-

stant prices of labor and capital {w, r}, and a vector of constant aggregates {K,L, Y,C} such that:

1. the consumption functions c (at, el) and c (at, eh) satisfy Equations (7) and (8), i.e. they solve

the household’s allocation problem,

2. factor prices satisfy the first order condition in Equation (10), i.e. they solve the firm’s

problem,

3. markets clear, i.e. Equation (4) holds, with C =
∑

et

∫∞
a c (at, et) g (at, et) dat, and production

factors satisfy Equations (11) and (12),

4. the joint probability density function of the state variables is stationary, i.e. ∂g(at,et)
∂t = 0 for

all (at, et) ∈ [a,∞)× E.

2.4 Distribution of endowments and wealth

Given its dependence on one continuous random variable and one discrete random variable, the

stationary joint density function, g (at, et), can be split into g (at, eh) and g (at, el). Following Bayer

and Wälde (2013), we refer to these individual probability functions as ”subdensities”. For each

et ∈ E , it follows that g (at, et) ≡ g (at | et) p (et), implying that:∫
g (at, et) dat = p (et) , (13)

where p (et) is the stationary probability of having an efficiency endowment equal to et. Then, the

(marginal) stationary density function of wealth can be computed as:

g (at) = g (at, eh) + g (at, el) . (14)
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Given our two state Markov process for the endowment of efficiency units it is possible to show

that its stationary distribution is given by (see Appendix C):

lim
t→∞

p (eh, t) ≡ p (eh) =
φlh

φhl + φlh
, (15)

lim
t→∞

p (el, t) ≡ p (el) =
φhl

φhl + φlh
. (16)

Let s (at, et) = rat+wet−c (at, et) denote the optimal savings function for an individual with an

efficiency endowment equal to et. As shown in Appendix B, the subdensities in Equation (14) corre-

spond to the solution of the following non-autonomous quasi-linear system of differential equations

known as (stationary) Fokker-Planck equations:

s (at, el)
∂

∂at
g (at, el) = −

(
r − ∂

∂at
c (at, el) + φlh

)
g (at, el) + φhlg (at, eh) , (17)

s (at, eh)
∂

∂at
g (at, eh) = −

(
r − ∂

∂at
c (at, eh) + φhl

)
g (at, eh) + φlhg (at, el) , (18)

where the partial derivatives with respect to at describe the cross-sectional dimension of the den-

sity function. The system of equation (17)-(18) takes as given the optimal policy functions for

consumption of individuals. This feature creates a recursive structure within the model that facil-

itates its solution: households and firms meet at the market place and make their choices taking

prices as given. Prices in turn are determined in general equilibrium and hence depend on the

entire distribution of individuals in the economy. Such distribution is determined by the optimal

choices of households and the stochastic properties of the exogenous shocks.

2.5 Computation of the equilibrium

The solution of our prototype economy is not available in closed form. Therefore, for a given set

of values of the structural parameters, the stationary competitive equilibrium in Definition 2.1 is

numerically approximated on a discretized state space. The algorithm we use builds on earlier

work by Candler (1999) and Achdou et al. (2017) and exploits the recursive nature of the model.

It consists of two main blocks: (i) an outer block that takes the factor prices as given to compute

in a recursive way the stationary equilibrium at the macro level; and (ii) an inner block that uses

an implicit finite difference method in two stages. In the first stage it approximates the solution

to the household’s allocation problem at the micro level. Given the optimal consumption function

obtained in stage one, the second stage approximates the stationary subdensities that solve the

system of ordinary differential equations in Equations (17)-(18). Having approximated the density

function, the factor prices are updated and the algorithm iterates until convergence. A detailed

description of the algorithm and its implementation can be found in Appendix D.
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3 Structural estimation: The likelihood function

While there is a broad consensus on the importance of heterogeneity in macroeconomics, there is

less agreement on how these models should be taken to the data. To date, calibration is the stan-

dard approach used by researchers to map observations into parameter values of a structural model.

Under this methodology, parameters are determined by minimizing the distance between a set of

empirical moments and the same set of moments implied by the model3, or by fixing the values of

the parameters to those estimated in previous microeconomic studies, or to long-run averages of

macroeconomic aggregates.

An alternative way to take structural models to the data is through formal econometric meth-

ods. In this section we show how to estimate the structural parameters of heterogeneous agent

models using full information methods. The feasibility of our procedure is dictated, in general, by

the use of continuous-time methods, and in particular by the Fokker-Planck equations that allow

us to approximate the probability density function of wealth which can be then used to build the

model’s likelihood function. Our focus will be on the ability to estimate the model’s parameters

using the information content in the cross-sectional distribution of individual wealth. Appendix E

shows how our framework can be extended to include information on individual income as proxied

by the household’s employment status.

Let a = [a1, . . . , aN ] be a sample of N i.i.d observations on individual wealth, and θ a K × 1

vector of structural parameters to be estimated. In what follows, we assume that θ ∈ Θ ⊂ RK,

where Θ is the parameter space, assumed to be compact. For the model in Section 2, the likelihood

function can be derived using the subdensity functions that solve Equations (17)-(18). According

to the identity in Equation (14) the (marginal) stationary probability density function of wealth

can be computed as:

g (an | θ) = g (an, el | θ) + g (an, eh | θ) (19)

for each n = 1, . . . , N , where we have made explicit the dependence on the vector of parameter

values, θ. For a given sample a, the log-likelihood function can be then computed as:

LN (θ | a) =

N∑
n=1

log g (an | θ) , (20)

whereas the maximum likelihood (ML) estimator, θ̂N is defined as:

θ̂N = arg max
θ∈Θ

LN (θ | a1, . . . , aN ) . (21)

Since the density function of wealth, and hence the log-likelihood function, summarizes all the

restrictions imposed by the economy model, our maximum-likelihood estimator belongs to the class

of full information estimators
3See Castañeda et al. (2003) and Dı́az-Giménez et al. (2014).
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In practice, the ML estimation is carried out by means of an iterative procedure that requires

solving the model for different values of the parameter vector θ. At each iteration the model is

solved on the discretized state-space A×E using the algorithms described in Section 2. The wealth

lattice is discretized using I ≤ N grid points on the partially ordered set A = [min (a) ,max (a)].

Once the density function of wealth has been approximated, the log-likelihood function is con-

structed in two steps: (i) For each an ∈ a, use piece-wise linear interpolation to evaluate g (an | θ);

(ii) Once g (an | θ) has been evaluated for all an ∈ a, the log-likelihood function is computed using

Equation (20).

A crucial assumption for the maximum likelihood estimator to deliver consistent estimates and

valid asymptotic inference is that of identification. In general, a vector of parameters θ is said to be

identified if the objective function L (θ | a) has a unique maximum at its true value θ0. Formally,

the identification condition establishes that if θ 6= θ0, then L (θ | a) 6= L (θ0 | a), for all θ ∈ Θ.

Recently, Canova and Sala (2009) documented the existence of identification issues in the context

of linearized DSGE models. These identification problems, which could also emerge in heteroge-

neous agent models of the type studied in this paper, are related to the shape and curvature of the

objective function, and have been classified by the authors as follows4:

1. Observational equivalence: if two vectors of parameters, θ̂1 ∈ Θ and θ̂2 ∈ Θ deliver the same

maximized objective function, they are said to be observational equivalent. In the maximum

likelihood case, this occurs whenever L
(
θ̂1 | a

)
= L

(
θ̂2 | a

)
, and for any other θ ∈ Θ,

L
(
θ̂j | a

)
> L

(
θ | a

)
, for j = 1, 2.

2. Partial-identification: if for some partition θ = [θ1,θ2] ∈ Θ1 × Θ2 = Θ, L (θ | a) =

L (f (θ1,θ2) | a), for all a, and for all θ1 ∈ Θ1 and θ2 ∈ Θ2, where f is a continuous

function, then θ1 and θ2 are said to be partially identified.

3. Weak identification: a subset of parameters in θ is said to be weakly identified if the objective

function, even though has a unique maximum, does not show enough curvature. In other

words if there exists a θ̂ such that L
(
θ̂ | a

)
> L

(
θ | a

)
for all a, and for all θ 6= θ̂ ∈ Θ.

However,
∥∥∥L(θ̂i | a)− L(θi | a)∥∥∥ < ε for some θi 6= θ̂i ∈ Θ, i = 1, . . . ,K.

4. Asymmetric weak identification: a group of parameters in θ is said to exhibit asymmetric weak

identification if the objective function is asymmetric in the neighborhood of the maximum,

and its curvature is insufficient only in a portion of the parameter space. In other words if

4A fifth type of identification problem known as under-identification emerges in models where the solution is only
locally valid, i.e. approximated using perturbation or linear quadratic methods. In that case, some of the model
parameters disappear from the estimator’s objective function because they are not present in the rational expectation
solution of the model.
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there exists a θ̂ such that L
(
θ̂ | a

)
> L

(
θ | a

)
for all a, and for all θ 6= θ̂ ∈ Θ. However,∥∥∥L(θ̂i | a)− L (θi | a)

∥∥∥ < ε for some θi > θ̂i ∈ Θ or for some θi < θ̂i ∈ Θ, i = 1, . . . ,K.

Checking for identification in practice is difficult since the mapping from the structural param-

eters of the model to the objective function is highly nonlinear and usually not known in closed

form. Therefore, the standard rank and order conditions used in linear models originally proposed

in Rothenberg (1971) cannot be applied. In what follows, we use some of the simulation and graph-

ical tools proposed in Canova and Sala (2009) to address the important question of identification

in our nonlinear framework.

4 Population identification analysis

We begin our study of the proposed maximum likelihood estimator by analyzing the behavior of the

density function of wealth when the sampling process is known. A basic prerequisite for carrying out

valid inference about the parameter vector θ, is that distinct values of θ ∈ Θ imply distinct density

functions. Therefore, this section investigates whether it is possible (or not) to distinguish the

model’s density function of wealth approximated using the true parameter values, g (a | θ0), from

the density function approximated using a range of parameter values that differ from those in the

population, g (a | θ), with θ 6= θ0. We refer to this approach as population identification analysis

since it is independent of the data, and its conclusions remain valid even with samples of infinite size.

In what follows we assume that the population values of the structural parameters of the model,

θ0, are those given by the calibration in Table 1. These values are fairly standard in the litera-

ture. In particular, the labor efficiency process is calibrated to match the long run employment-

unemployment dynamics of the US economy. In the model, time is measured in years and parameter

values should be interpreted accordingly. Following Shimer (2005), the promotion rate is calibrated

to match the monthly average job finding rate of 0.45, and the demotion rate is calibrated to match

the monthly average separation rate of 0.034. The endowment level of high efficiency is normalized

to one, and that of low efficiency unit is set to one-fifth of the employed, which lies in between

the values used in Huggett (1993), and Imrohoroğlu (1989) and Krusell and Smith (1998). The

transition rates for the Poisson processes are computed using Equations (15)-(16).

Since in our Bewley-Aiygari-Hugget economy the labor efficiency endowment process is com-

pletely exogenous, we will focus our attention on the ability to identify (and estimate) the supply

side and household’s preference parameters, while those parameters describing the endowment pro-

cess will always remain fixed to the values in Table 1. To avoid unnecessary additional notation,

the parameter vector θ will refer exclusively to θ = {γ, ρ, α, δ}.
Formally, we say that the parameter vector θ ∈ Θ is identified if g (a | θ) = g (a | θ0). In

order to make the identifiability condition operational we use the L1 norm to measure the distance

11



Table 1. Population parameters, θ0.

In the model, time is measured in years and parameter values should be interpreted accordingly. The
endowment of efficiency units is given by:

det = −∆edq1,t + ∆edq2,t, ∆e ≡ eh − el and e0 ∈ {eh, el},

where q1,t and q2,t are Poisson processes with intensity rates φlh and φhl respectively. The representative

household has standard preferences defined by Ut = Et
[∫∞
t
eρ(s−t)u (cs) ds

]
where u (ct) =

c1−γt

1−γ . The
macroeconomic identity in the stationary competitive equilibrium is given by:

Y = C − δK, where Y = KαL1−α.

Relative risk aversion, γ 2.0000

Rate of time preference, ρ 0.0490

Capital share in production, α 0.3600

Depreciation rate of capital, δ 0.1038

Endowment of high efficiency, eh 1.0000

Endowment of low efficiency, el 0.2000

Demotion rate, φhl 0.5578

Promotion rate , φlh 7.3822

between two densities:

d (θ,θ0) ≡ d (g (a | θ) , g (a | θ0)) =
I∑
i=1

∣∣∣g (ai | θ)− g (ai | θ0)
∣∣∣ (22)

where g (ai | ·) is the probability density function evaluated at grid point i for i = 1, 2, . . . , I.

From a statistical point of view, the probability density function should contain all the rele-

vant information about the value of the parameter vector θ. Therefore, if the distance function

in Equation (22) features identification problems, we cannot hope to achieve identification of the

model parameters using the likelihood of the data.

Figure 1 plots the shape of the distance function d (θ,θ0) for each of the elements of θ5. In each

case, we vary one parameter at a time within an economically reasonable range while keeping all

the remaining parameters at their population values. The population value of the parameter under

analysis is represented by a dotted vertical line. The figure displays two important features. First,

the distance function is uniquely minimized at θ0, ruling out this way identification problems related

to observational equivalence6. Second, the distance function exhibits enough curvature in the

neighborhood of θ0, suggesting strong identification power in each dimension of the parameter space.

Figure 1 only considers one dimension of the parameter space at a time which prevents us

5We also performed the population identification analysis on the full parameter set. Parameters associated with
the labor endowment process are well identified among themselves, but poorly identified in association with other
model parameters. The results are available upon request.

6Alternative metrics like the Chi-squared distance and the Earth’s Moving Distance function give similar results.
They are not displayed here for space considerations but are available upon request.
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Figure 1. Distance function d (g (a | θ) , g (a | θ0)). The graph shows the absolute deviation of the L1

distance criterion as a function of the parameter space. The population values for the structural parameters,
θ0, are given in Table 1 and are represented by the dotted vertical line.

from detecting ridges in the objective function that might indicate partial identification problems.

Therefore, Figure 2 plots the contours of the distance function for all pairwise combinations of

parameters while keeping the remaining parameters fixed at their true value.

The upper right panel of Figure 2 reveals a ridge on the distance function for the supply side pa-

rameters, α and δ. This means that a proportional increase of both parameters may produce almost

observational equivalent probability density functions of wealth, and therefore a clear indication

of partial identification problems. In other words, small perturbations of the production function

parameter and the depreciation rate have a large impact on the shape of the wealth distribution.

Interestingly, the relationship is not linear. In fact, the ridge appears to be slightly concave with

respect to α. The distance functions for the discount rate ρ and the supply side parameters, α and

δ, also reveals a potential partial identification issue. However, the contours suggest that there is

still enough curvature compared to the case of α against δ. The risk aversion parameter γ on the

other hand, is strongly identified in combination with any other parameter.
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Figure 2. Distance surface for selected parameters. The graph shows the contour associated to
the L1 distance surface for selected combinations of parameters. The population values for the structural
parameters, θ0, are given in Table 1. A circle ” ” indicates the true parameter values, and cross ”×” the
combination of parameters that deliver the minimum of the distance surface.

The partial identification issues just described are consistent with the identifiability problems

that arise in the standard neoclassical growth model, as exemplified by its implied steady state

14



Table 2. Finite sample estimates.

The table reports finite sample estimates of the structural parameters of the model. Their absolute bias, their
Monte Carlo standard errors (s.e.), and their mean squared errors (MSE) are obtained using 500 replications
of the experiment. The sample size in each replication is given by N .

N = 1000 N = 5000 N = 10000 N = 50000

θ Bias s.e. MSE Bias s.e. MSE Bias s.e. MSE Bias s.e. MSE

γ 0.3345 1.3183 1.8464 0.0068 0.5374 0.2883 0.0196 0.3444 0.1188 −0.0251 0.1617 0.0267

ρ −0.0048 0.0386 0.0015 −0.0071 0.0149 0.0003 −0.0041 0.0117 0.0002 −0.0018 0.0052 0.0000

α 0.1779 0.2454 0.0918 0.0964 0.1864 0.0440 0.0482 0.1645 0.0293 −0.0066 0.1100 0.0121

δ 0.2034 0.2754 0.1171 0.1052 0.1692 0.0396 0.0583 0.1394 0.0228 0.0066 0.0799 0.0064

capital-output ratio, K/Y . Assuming that the gap (r − ρ) does not vary significantly with α and δ,

and thus assumed to be relatively constant, the capital-output ratio of the Bewley-Hugget-Aiyagari

economy is proportional to that of the neoclassical growth model, K/Y ∝ α/ (ρ+ δ). Therefore,

for a given stationary capital-output ratio, and a given discount rate, the stationary equilibrium

leads to a positive relation between α and δ similar to that depicted in Figure 27.

5 Finite sample properties

This section uses Monte Carlo simulations to investigate the properties of the ML estimator

in finite samples by estimating the model of Section 2 using simulated cross-sectional data of

individual wealth. The experiment is carried out by simulating 500 samples drawn from the

model’s population stationary probability density function g (a | θ0), each of them of size N , with

N ∈ {1000, 5000, 10000, 50000}. For each sample, we estimate the model’s parameters using the

maximum likelihood estimator defined in Equation (21)8.

The results of the Monte Carlo experiment are summarized in Table 2. For each N , it reports

the absolute bias, the Monte Carlo standard errors, and the mean squared error (MSE). The Monte

Carlo experiment reveals some important features that should be addressed. First, the bias on the

risk aversion coefficient and the discount rate are within a reasonable range even in small samples.

Their associated mean squared errors decrease by almost one order of magnitude as the sample size

increase from N = 1000 to N = 5000. This in line with the results reported in Section 4 where it

was shown that both parameters are well identified in the population. Second, the estimates of the

capital share in production and the depreciation rate of capital exhibit a substantial positive bias

that is far from negligible in small samples.

Figure 3 plots kernel density estimates of the ML estimates for both small (N = 5000) and

7While the model’s steady state capital-output ratio provides an intuitive way to understand the partial identifi-
cation of α and δ, it should be kept in mind that Figure 2 depicts distance functions of the density of wealth which
are not equal to the aggregate capital stock (see Equation (11)). Hence, although different combinations of α and δ
lead to the same K/Y , the underlying stationary distributions of wealth need not to be the same.

8The initial value used in the estimation procedure corresponds to the true parameter vector.
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Figure 3. Finite sample distribution of parameter estimates. The graph plots the kernel density of
estimated parameters across 500 random samples of size N = 5000 (dashed line) and N = 50000 (continuous
line) generated from the true data generating process. The vertical line denotes the true parameter value.

large (N = 50000) samples. A dotted vertical line represents the true parameter value. The figure

provides further evidence on the degree of accuracy with which γ can be identified, and the effects

of using large samples on the bias reduction and correct identification of ρ, when the model is

estimated on a cross-section of individual wealth. The figure also offers a clear picture of the mean-

ingful biases in α and δ. Both parameters exhibit similar kernel density functions with multiple

modes which reflect on the potential partial identification issues discussed in the previous section.

These identification problems cannot be alleviated by increasing the sample size, as multiple modes

still persist even for N = 50000.

While the results are somehow encouraging for large samples, as the parameter estimates ap-

proach their true values in the population, they suggest that the identification power of the max-

imum likelihood estimator in small samples is reduced in some dimensions of the parameter space

when using data on a cross-section of individual wealth. In the case of the prototype economy of

Section 2, the data deficiencies induced by the use of samples of reduced size are reflected in a
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Figure 4. Steady state macroeconomic aggregates density estimates. The graph shows the implied
distribution of the steady state values for the interest rate, the capital-output ratio, and the savings rate
using the estimated parameters from the Monte Carlo experiment with N = 5000 and N = 50000. The
savings rate is computed as (Y − C)/Y . The vertical line denotes the value in the population.

poor estimation of parameters related to the supply side of the economy. In particular, the results

imply, on average, a higher use of capital in the production function, and a higher fraction of the

depreciated capital stock.

What are the consequences of having biased estimates in some of the model parameters for the

model implied macroeconomic aggregates? Figure 4 plots the implied distribution of the steady

state interest rate, capital-output ratio and aggregate savings rate in both small and large samples.

While the partial identification issues found between the supply side parameters hardly affect the

model’s implied steady state interest rate, they markedly contaminate the implied capital-output

ratio and the aggregate savings rate, even in large samples. In the face of these partial identifica-

tion issues, the estimated capital-output ratio and the savings rate cannot be correctly identified

as suggested by the presence of multiple modes. Therefore, any economic interpretation or policy

recommendation with regards to these two variables should be made with caution.

Overall, our Monte Carlo evidence suggests that while the parameters related to the house-

hold preferences can be identified and accurately estimated with the use of cross-sectional data

on individual wealth, the parameters associated with the supply side of the economy cannot be

separately identified leading to inferential problems that persist even in large samples. Following

standard practice in macroeconomic, we next investigate the consequences of following an strategy

where some of the troublesome parameters are calibrated at arbitrary values while estimating the

remaining ones.
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6 Calibration and estimation

Our findings indicate that across some dimensions of the parameter space the maximum likelihood

estimator delivers biased and poorly identified estimates when the only data available is a finite

cross-section on individual wealth. A common practice among economists to get around this ob-

stacle is to calibrate those parameters that are problematic by fixing their value, and estimate the

remaining ones. In the context of representative agent (linearized) DSGE models, Canova and Sala

(2009) conclude that combining both approaches can lead to a biased inference and meaningless

parameter estimates. To check whether this is the case in the heterogeneous agent model analyzed

here, we use Monte Carlo simulations based on the presumption that the share of capital in the

production function and the depreciation rate of capital cannot be separately identified from a

cross-section of wealth.

Table 3 summarizes the results of our experiment when 500 samples of individual wealth have

been drawn from the model’s population stationary probability density function, each of them of

size N = 5000. The table reports the absolute bias and MSE for each of the following scenarios: (i)

no parametric restrictions; (ii) α is calibrated; (iii) δ is calibrated; (iv) α and δ are calibrated. The

upper half of the table shows the results when the parameters in scenarios (ii)-(iv) are calibrated to

their values in the population, while the lower half shows the results for the case in which they are

miscalibrated to some fraction of their true value. The top panel of the table shows that, relative

to the unrestricted model, fixing one of the supply side parameters (scenarios (ii) and (iii)) does

not provide further improvements in the precision with which the model’s preference parameters

can be estimated. However, the estimation of partially identified parameters can be substantially

improved. Most strikingly, the mean squared error of either α or δ is about two orders of magnitude

lower compared to the case where both parameters are jointly estimated. For the case in which

both troublesome parameters are calibrated to their true values, the biases and the MSE of the

estimates of the preference parameters exhibit a considerably improvement.

Although the above results strongly suggest calibrating either one or both supply side parame-

ters, such an approach may not carry an improvement in the identification and estimation accuracy

of the model parameters if their calibrated values happen to be different from those in the pop-

ulation. The bottom panel of the table shows that even if one of the supply side parameters is

miscalibrated to a fraction of its true value, the estimation of the non-calibrated parameter is still

much more accurate compared to the case where both α and δ are jointly estimated. The results

also indicate, as opposed to the findings in the top panel, that the biases in γ and ρ become much

more severe when the supply side parameters are both miscalibrated. As argued in Canova and

Sala (2009) this could be explained by the fact that the miscalibration changes the shape of the

likelihood function inducing this way a considerable bias in the parameters that were originally free
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Table 3. Conditional estimates.

The table reports finite sample estimates for a subset of the structural parameters of the model conditional
on the calibrated values reported in the first row. The bias and the MSE are obtained using M = 500
samples, each of them of size N = 5000.

No restrictions α = α0 δ = δ0 α = α0 and δ = δ0

θ Bias MSE Bias MSE Bias MSE Bias MSE

γ 0.0068 0.2883 −0.0636 0.2186 −0.0590 0.2236 −0.0034 0.0206

ρ −0.0071 0.0003 0.0013 0.0002 0.0001 0.0001 0.0000 0.0000

α 0.0964 0.0440 - - 0.0011 0.0003 - -

δ 0.1052 0.0396 −0.0012 0.0002 - - - -

No restrictions α = 2
3
α0 δ = 2

3
δ0 α = 2

3
α0 and δ = 2

3
δ0

Bias MSE Bias MSE Bias MSE Bias MSE

γ 0.0068 0.2883 −0.0497 0.2119 −0.0992 0.2146 −1.9676 3.8713

ρ −0.0071 0.0003 0.0027 0.0002 0.0012 0.0002 −0.0306 0.0009

α 0.0964 0.0440 - - −0.0572 0.0037 - -

δ 0.1052 0.0396 −0.0686 0.0049 - - - -

of identification issues.

Figure 5 complements our previous finding by plotting the kernel density estimates of the Monte

Carlo ML estimates and their implied steady state interest rate, capital-output ratio and savings

rate. Two cases are considered depending on whether the depreciation rate is fixed to its value

in the population or miscalibrated to a fraction of the true value. The top panel shows that,

regardless of the value chosen for δ, the preference parameters are correctly identified. Regarding

the capital share, the results suggest that the identification problems discussed previously, which

were associated to the presence of multiple modes as shown in Figure 3, disappear under this

calibration strategy. However, although identifiable, the estimator of the capital share will exhibit

a considerable bias when the depreciation rate is miscalibrated. The direction of this bias will follow

that of the miscalibration. Similar conclusions are obtained for the density estimates of the implied

macroeconomic aggregates. Independently of the calibration used, the interest rate remains well

identified and accurately estimated, while the capital-output ratio and the savings rate are now

free of identification issue but cannot be precisely pinned down when δ is miscalibrated.

Figure 6, on the other hand, provides evidence on the pervasive effects of calibrating both α and

δ to a value different to that in the population. It plots the contour of the log-likelihood function

for combinations of γ and ρ within a reasonable economic range using a random sample of size

N = 5000 generated from the true model. The contour plot on the left column is generated when

the capital share and the depreciation rate are fixed to α = α0 and δ = δ0, while the contour on

the right column miscalibrates them to α = 2
3α0 and δ = 2

3δ0. For both cases, we have marked

the combination of parameters that deliver the maximum of the log-likelihood function and the

true values in the population. While fixing both troublesome parameters at the same time have no

19



0 1 2 3

0

0.2

0.4

0.6

0.8

1

0.02 0.04 0.06 0.08 0.1

0

5

10

15

20

25

30

35

0.25 0.3 0.35 0.4 0.45

0

5

10

15

20

25

0.02 0.04 0.06 0.08 0.1

0

5

10

15

20

25

30

35

40

2.2 2.4 2.6 2.8

0

1

2

3

4

5

6

7

0.15 0.2 0.25

0

20

40

60

80

100

Figure 5. Parameter and macroeconomic aggregates densities with fixed δ. The graph shows
the Monte Carlo implied distribution of the parameter estimates and the steady state interest rate, capital-
output ratio, and savings rate when the depreciation rate is either fixed to its true value in the population,
δ = δ0, or miscalibrated to δ = 2

3δ0. The sample size is N = 5000. The vertical line denotes the value in the
population.

effects on the estimation of the preference parameters if the calibration happens to coincide with

their values in the population, the more realistic case in which they are miscalibrated to a frac-

tion of their true values shows how the likelihood changes. Noticeably, the bivariate log-likelihood

contour shifts dramatically downwards to the left, yielding much lower estimates for both γ and ρ.

The bias induced by an strategy that calibrates both supply side parameters seems to follow the

direction in which the fixed parameters where miscalibrated.

For finite samples, our results suggest to estimate the model parameters by fixing one of the

supply side parameters a priori. This approach remains valid even when the parameter being

fixed is miscalibrated given that those parameters related to the household’s preferences remain

well identified. While this strategy breaks down the inferential problems associated to the partial

identification issues, it implies that the supply side parameter being freely estimated will face a

similar bias to that introduced through the miscalibration, making any economic interpretation of

its estimate difficult. Our results also advice not to calibrate both supply side parameters at the
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Figure 6. Log-likelihood function contour for fixed α and δ. The graph shows the contour of the
log-likelihood function for combinations of γ and ρ within a reasonable economic range when a sample of
size N = 5000 is generated from the true model. The contours to the left calibrate α = α0 and δ = δ0.
The contours to the right calibrate α = 2

3α0 and δ = 2
3δ0. A circle ” ” indicates the true combination

of the parameter values, and a cross ”×” the combination of parameters that deliver the maximum of the
log-likelihood function.

same time since it creates non-negligible distortions in the distribution of parameter estimates that

lead to serious biases on the remaining parameters.

7 Empirical illustration

This section provides an empirical illustration of our likelihood approach by estimating the param-

eters of the Bewley-Aiyagari-Hugget model of Section 2 using the wealth data reported in the 2013

Survey of Consumer Finances (SCF)9.

Similar to our Monte Carlo experiments, we do not estimate the parameters of the income

process directly since the model assumes earnings are completely exogenous, and hence there is

no feedback from other features of the model that can be used to estimate its parameters. Fur-

thermore, the discrete nature of our assumed income process does not allow us to exploit in a

straight manner the information content in any cross-sectional data on individual income. Instead,

we calibrate the parameters of the income process to match the 2013 employment-unemployment

dynamics. In particular, we fix the endowment of high labor efficiency, eh, to 1.76 to match the av-

erage annual hours worked (in thousands). The endowment of low labor efficiency, el, which should

capture the unemployment income, is set to be 1/5 of eh. The transition rates, φlh and φhl, are set,

9It should be stressed that our benchmark model is most likely misspecified as it cannot appropriately account
for some of the main facts that characterize the wealth distribution in the U.S. Hence, the estimates reported are
subject to considerably misspecification bias, and should be interpreted with caution.
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Table 4. ML estimates with 2013 SCF data.

The table reports the maximum likelihood estimates of the model parameters for two different scenarios. It
provides bootstrapped standard errors and confidence intervals based on 128 bootstrap repetitions.

ML estimates Std. Error 95% CI

Scenario I: α = 0.36

γ 0.4840 0.1789 [0.1334, 0.8346]

ρ 0.0003 0.00003 [0.00029, 0.00039]

δ 0.0146 0.00016 [0.0143, 0.0150]

Scenario II: δ = 0.1038

γ 0.4716 0.0498 [0.3739, 0.5692]

ρ 0.0010 0.00007 [0.0009, 0,0012]

α 0.6399 0.00064 [0.6387, 0.6412]

respectively, to 3.3353 and 0.2779, to match the 2013 monthly employment-unemployment transi-

tion probabilities of 0.24 (unemployment to employment) and 0.02 (employment to unemployment)

obtained using the labor market statistics published by the U.S. Bureau of Labor Statistics. As our

identification analysis suggests, we do not estimate α and δ jointly. Instead we provide estimation

results for the two following scenarios: (i) α is calibrated to 0.36, while δ is freely estimated, and

(ii) δ is calibrated to 0.1038, while α is freely estimated. Technical details on the estimation setup

are provided in Appendix E.

Table 4 reports the estimation results together with bootstrapped standard errors and 95%

confidence bands based on 128 bootstrap repetitions. The estimates of the risk aversion parameter,

γ, are well below one. The point estimates are almost identical in both scenarios, a result that is

in line with our previous findings that the identification of γ is not influenced by the calibration

of the supply side parameters. The estimates of the discount rate are in both cases extremely

low, suggesting that our benchmark model requires very patient households to be able to match

the observed wealth of households. The point estimates of ρ exhibit substantial differences across

scenarios with α fixed yielding a much lower estimate than the case of having δ fixed.

The estimates of the supply side parameters in each of the two scenarios reveal a very interesting

fact. Relative to their calibrated values, the actual estimate of α is much higher, while the actual

estimate of δ is much lower. Being this the case, a high estimate of α is accompanied by a high

calibrated value of δ, and a low estimate of δ is accompanied by a low calibrated value of α. This

result is in line with the partial identification issues reported earlier, where proportional increases

(or decreases) on both parameters yield almost identical likelihood functions.

As mentioned above, our benchmark model is very unlikely to provide a correct specification of

the underlying wealth data. Table 5 provides some wealth statistics computed from the data and the

estimated model for each of the two scenarios. It reports the Gini coefficient and the percentage of
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Table 5. Wealth Inequality: Data vs. Model.

The table compares the Gini coefficient and the distribution of wealth across top percentiles from the SCF
data to those implied by the estimated models.

% wealth in top

Gini Coefficient 1% 5% 20%

SCF 2013 data 0.8262 34.47 61.94 85.61

Scenario I: α = α0 0.3781 5.39 17.56 44.44

Scenario II: δ = δ0 0.4653 8.58 23.89 52.05

total wealth held by the top 1, 5 and 20 percentiles computed from the model’s implied cumulative

distribution function (CDF) as shown in Appendix B. As expected, the observed wealth is much

more concentrated than what the estimated models predicts, with the case of δ fixed yielding

a slightly higher concentration of wealth than the case of α fixed. The poor fit of the wealth

statistics obtained from our estimated model is in line with the results usually reported for the

type of heterogeneous agent model studied in this paper, as documented previously in Quadrini

and Ŕıos-Rull (1997), Cagetti and De Nardi (2008), and Benhabib and Bisin (2017).

As a robustness check, we extend our estimation framework to exploit the stationary joint

distribution of wealth and efficiency implied by the Bewley-Hugget-Aiyagari model, g (at, et). We

proxy the efficiency level et by the employment status of the household’s head reported in the

SCF10. The details on how to extend the log-likelihood function can be found in Appendix E.

Table 6 reports the maximum likelihood estimates, the standard errors and 95% confidence bands,

as well as the implied Gini coefficient and distribution of wealth across top percentiles for the

scenario ii). The results suggest that the estimates in Table 4 are robust to the inclusion of

a measure of income data. The parameter estimates remain statistically significant and do not

change dramatically relative to the case where the model is estimated using just a cross-section on

individual wealth. However, we suspect that the use of income data in such a simplistic way may

not be completely informative to the estimation process and hence does not have a major impact

on the model parameters identification. A future extension of our framework should include a

continuous process for income as in Achdou et al. (2017) that allows to exploit in a better way the

information content in a cross-section of individual earnings.

10It should be kept in mind that this is just a crude approximation to the model’s discrete income dimension since
the employment status data available in the SFC is for the household’s head, whereas the data on wealth is for the
entire household.
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Table 6. ML estimates and wealth inequality statistics with 2013 SCF data.

The table reports the maximum likelihood estimates of the model parameters, and the implied Gini coefficient
and distribution of wealth across top percentiles when the information used in the estimation contains a cross-
section on individual wealth and a cross-section of employment status of the household’s head. It provides
bootstrapped standard errors and confidence intervals based on 128 bootstrap repetitions.

ML estimates Std. Error 95% CI

δ = 0.1038

γ 0.6040 0.0582 [0.4899, 0.7180]

ρ 0.0012 0.0001 [0.0010, 0,0014]

α 0.6509 0.0006 [0.6497, 0.6522]

% wealth in top

Gini Coefficient 1% 5% 20%

Data 0.8262 34.47 61.94 85.61

δ = 0.1038 0.3945 5.85 18.37 45.45

8 Conclusions

Heterogeneous agent models constitute a powerful framework in macroeconomics not just for the

study of inequality and the distribution of wealth but also for the understanding of macroeconomic

aggregates. However, there is little agreement on how these models should be taken to the data. To

date, calibration is the standard approach used by researchers to map observations into parameter

values. Despite being very illustrative for the study of a model’s implications, the use of econometric

methods provide some important advantages by allowing: (i) to impose on the data the restrictions

arising from the economic theory associated with a particular model; (ii) to assess the uncertainty

surrounding the parameter values which ultimately provides a framework for hypothesis testing,

(iii) for the use of standard tools of models selection and evaluation.

In this paper we introduce a simple full information likelihood approach to estimate the struc-

tural parameters of heterogeneous agent models using the information content in the cross-sectional

distribution of wealth. Following the work of Bayer and Wälde (2011, 2013) and Achdou et al.

(2014), the feasibility of our approach is dictated, in general, by the use of continuous-time meth-

ods, and in particular by the Fokker-Planck equations that allow us to approximate the stationary

probability density function of wealth which can be used to build the model’s likelihood function.

We also study the identification power of our maximum likelihood estimator based on data

representing a large cross-section of individual wealth. Given that the mapping between the deep

parameters of the model and the estimator’s objective function is highly nonlinear, and not available

in closed form, we follow Canova and Sala (2009) to assess in an indirect way whether the model’s

parameter are identified both in the population and in finite samples.
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Our results indicate that while the parameters associated to the household preferences in hetero-

geneous agent models of the Bewley-Hugget-Aiyagari type are well identified and can be accurately

estimated, the parameters closely related to the supply side of the economy exhibit partial identifi-

cation problems. In other words, these parameters cannot be separately identified in the sense that

increasing both parameters proportionally may leave the model’s implied wealth distribution, and

hence the likelihood function, unchanged. This partial identification problem is illustrated both at

the population level, and in finite sample using Monte Carlo simulations. Our experiments suggest

that the presence of partial identification issues lead to non-negligible biases. In particular, we find

that the estimates of the capital share in production and the depreciation rate of capital exhibit a

substantial positive bias that is far from negligible in small samples.

To overcome the partial identification problem between the capital share and the depreciation

rate we propose and investigate the effects of following a strategy in which these parameters are

calibrated, while the remaining ones are estimated. We conclude that a strategy in which only

one of the two parameters is calibrated improves the finite sample properties of other one without

affecting the identification, neither the estimation accuracy, of the preference parameters. This

holds true even in the case where the underlying parameter is miscalibrated. While this strategy

breaks down the inferential problems attached to partial identification issues, it implies that the

supply side parameter being freely estimated will exhibit a similar bias to that introduced by the

miscalibrated parameter. We also conclude that calibrating both parameters at the same time

has pervasive consequences for the estimation of the preference parameters, and therefore such a

strategy is not recommended when estimating the model on a cross-section of wealth.

We finally provide a small empirical illustration of our proposed framework by estimating the

parameters of a Bewley-Aiyagari-Hugget model using the wealth data reported in the 2013 Survey of

Consumer Finances. The estimates obtained provide supporting evidence that confirm our results

on the identification power of the maximum likelihood estimator. As expected, the estimated model

predicts reduced levels of wealth concentration relative to those observed in the U.S. economy. This

results are shown to be robust to the inclusion of data on employment status as a proxy for income.

Our results are encouraging and suggest an important role for likelihood-based inference in het-

erogeneous agent models. With the increased availability of micro data on household characteristics

and financial information, we expect that future research can consider more sophisticated models,

like those in studied Krusell and Smith (1998), Cagetti and Nardi (2006), Angeletos and Calvet

(2006), Angeletos (2007) and Benhabib et al. (2011), and more realistic income processes like the

ones in Achdou et al. (2014) and Gabaix et al. (2016). This will allow to extend the information set

used in the estimation process, potentially increase the identification power of the model structural

parameters, and eventually provide a better fit of the wealth distribution.
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A Hamilton-Jacobi-Bellman equations

Define the optimal value function:

V (a0, e0;w, r) = max
{ct}∞t=0

U0 s.t. (2), (3)

in which the general equilibrium factor rewards r and w are taken as parametric.

Following the principle of optimality, the household’s problem can be characterized by the

Hamilton-Jacobi-Bellman equation:

ρV (at, et; r, w) = max
ct∈R+

{
u(ct) +

1

dt
EtdV (at, et; r, w)

}
for any t ∈ [0,∞).

Applying the change of variable formula (see Sennewald and Wälde, 2006) the continuation

value is given by:

dV (at, et; r, w) = Va (at, et) dat + (V (at, el)− V (at, eh))dq1,t + (V (at, eh)− V (at, el))dq2,t

where Va (at, et) denotes the partial derivative of the value function with respect to wealth.

Using Equation (2) together with the martingale difference properties of the stochastic integrals

under Poisson uncertainty we have that for s ≤ t:

Es
[ ∫ t

s
(V (at, el)− V (at, eh))dq1,t −

∫ t

s
(V (at, el)− V (at, eh))φ1(et)dt

]
= 0

Es
[ ∫ t

s
(V (at, eh)− V (at, el))dq2,t −

∫ t

s
(V (at, eh)− V (at, el))φ2(et)dt

]
= 0.

Then, the Hamilton-Jacobi-Bellman equation can be written as:

ρV (at, et; r, w) = max
ct∈R+

{
u(ct) + Va(at, et; r, w)(rat + wet − ct)

+ (V (at, el; r, w)− V (at, eh; r, w))φ1(et)

+ (V (at, eh; r, w)− V (at, el; r, w))φ2(et)
}
.

The first-order condition for an interior solution reads:

u′(ct) = Va(at, et; r, w), (23)

for any t ∈ [0,∞), making optimal consumption c?t = c(at, et) a function only of the states and

independent of calendar time, t.

Due to the state dependence of the arrival rates in the endowments of efficiency units, only one

Poisson process will be active for each of the values of the discrete state variable, et. Using the first

order condition we obtain a bivariate system of maximized HJB equations:

ρV (at, eh; r, w) = u(c?t ) + Va(at, eh; r, w)(rat + weh − c?t ) + (V (at, el; r, w)− V (at, eh; r, w))φhl,

ρV (at, el; r, w) = u(c?t ) + Va(at, el; r, w)(rat + wel − c?t ) + (V (at, eh; r, w)− V (at, el; r, w))φlh.
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B Fokker-Planck equations

Assume there exists a function f whose arguments are the stochastic processes a and e, and define

the household’s optimal savings function as s (at, et) = rat + wet − c (at, et). Using the change of

variable formula, the evolution of f is given by:

df (at, et) = fa (at, et) s (at, et) dt+ (f (at, el)− f (at, eh)) dq1,t + (f (at, eh)− f (at, el)) dq2,t.

Due to the state dependence of the arrival rates only one Poisson process will be active. Applying

the expectations operator conditional on the information available at instant t and dividing by dt

we obtain the infinitesimal generator of f (at, et), denoted by Af (at, et) ≡ Etdf(at,et)
dt :

Etdf (at, et)

dt
= fa (at, et) s (at, et)

+ (f (at, el)− f (at, eh))φhl + (f (at, eh)− f (at, el))φlh. (24)

By means of Dynkin’s formula, the expected value of the function f (·) at a point in time t is

given by the expected value of the function at instant s < t plus the sum of the expected future

changes up to t:

Ef (at, et) = Ef (as, es) +

t∫
s

E (Af (aτ , eτ )) dτ. (25)

Differentiating Equation (25) with respect to time:

∂

∂t
Ef (at, et) =

∂

∂t

Ef (as, es) +

t∫
s

E (Af (aτ , eτ )) dτ


=

∂

∂t

Ef (as, es) +

t∫
s

E
(
Eτdf (aτ , eτ )

dτ

)
dτ


=

∂

∂t

Ef (as, es) +

t∫
s

Edf (aτ , eτ )


= E (Af (at, et))

=
∑

et∈{eh,el}

∞∫
a

Af (at, et) g (at, et, t) dat

that is:

∂

∂t
Ef (at, et) =

∞∫
−∞

Af (at, eh) g (at, eh, t) dat

︸ ︷︷ ︸
ωeh

+

∞∫
−∞

Af (at, el) g (at, el, t) dat

︸ ︷︷ ︸
ωel

(26)
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where g (at, et, t) is the joint density function of wealth and endowment of efficiency units at instant

t.

For illustration consider the case of et = eh, i.e., ωeh . Using the definition of the infinitesimal

operator together with Equation (24) we note that:

Af (at, eh) = fa (at, eh) s (at, eh) + (f (at, el)− f (at, eh))φhl.

Hence,

ωeh =

∞∫
a

[
fa (at, eh) s (at, eh) + (f (at, el)− f (at, eh))φhl

]
g (at, eh, t) dat

=

∞∫
a

fa (at, eh) s (at, eh) g (at, eh, t) dat +

∞∫
a

(f (at, el)− f (at, eh))φhlg (at, eh, t) dat.

Using integration by part for the term associated with fa:

∞∫
a

fa (at, eh) s (at, eh) g (at, eh, t) dat = −
∞∫
a

f (at, eh)
∂

∂at
[s (at, eh) g (at, eh, t)] dat

where:

∂

∂at
[s (at, eh) g (at, eh, t)] =

(
rt −

∂

∂at
c (at, eh)

)
g (at, eh, t) + s (at, eh)

∂

∂at
g (at, eh, t) .

Hence,

ωeh =

∞∫
a

f (at, eh)

[
−
(
rt −

∂

∂at
c (at, eh)

)
g (at, eh, t)− s (at, eh)

∂

∂at
g (at, eh, t)

]
dat

+

∞∫
a

[
(f (at, el)− f (at, eh))φhl

]
g (at, eh, t) dat

and

ωel =

∞∫
a

f (at, el)

[
−
(
rt −

∂

∂at
c (at, el)

)
g (at, el, t)− s (at, el)

∂

∂at
g (at, e2, t)

]
dat

+

∞∫
a

[
(f (at, eh)− f (at, el))φlh

]
g (at, el, t) dat.

Note that the expected value of f can be written as:

Ef (at, et) =

∞∫
a

f (at, eh) g (at, eh, t) dat +

∞∫
a

f (at, el) g (at, el, t) dat
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and therefore:

∂

∂t
Ef (at, et) =

∞∫
a

f (at, eh)
∂

∂t
g (at, eh, t) dat +

∞∫
a

f (at, el)
∂

∂t
g (at, el, t) dat. (27)

Finally we equate Equations (26) and (27) and collect terms to obtain:

∞∫
a

f (at, eh)ϕehdat +

∞∫
a

f (at, el)ϕeldat = 0 (28)

where:

ϕeh = −
(
rt −

∂

∂at
c (at, eh) + φhl

)
g (at, eh, t)

− s (at, eh)
∂

∂at
g (at, eh, t) + φlhg (at, el, t)−

∂

∂t
g (at, eh, t)

and

ϕel = −
(
rt −

∂

∂at
c (at, el) + φlh

)
g (at, el, t)

− s (at, el)
∂

∂at
g (at, el, t) + φhlg (at, eh, t)−

∂

∂t
g (at, el, t) .

The Fokker-Planck equations that define these subdensities are obtained by setting:

ϕel = ϕeh = 0

since that is that only way the integral equation (28) can be satisfied for all possible functions

f . A formal proof can be found in Bayer and Wälde (2013). This results in a system of two

non-autonomous quasi-linear partial differential equations in two unknowns g (at, eh, t), g (at, el, t):

∂

∂t
g (at, eh, t) + s (at, eh)

∂

∂at
g (at, eh, t) =

−
(
rt −

∂

∂at
c (at, eh) + φhl

)
g (at, eh, t) + φlhg (at, el, t)

∂

∂t
g (at, el, t) + s (at, el)

∂

∂at
g (at, el, t) =

−
(
rt −

∂

∂at
c (at, el) + φlh

)
g (at, el, t) + φhlg (at, eh, t) .

The stationary subdensities correspond to the case where the time derivatives ∂g(at,et,t)/∂t are

zero for all et ∈ E , which transforms the previous system of equations into one of ordinary differential

equations as described by Equations (17) and (18).
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Given the stationary subdensity function, the stationary probability ”subdistributions” can be

computed as:

G (at, et) =

a∫
a

g (xt, et) dxt (29)

where G (at, et) denotes the probability that an individual with endowment of efficiency equal to

et ∈ E has a wealth level of at most a. When a→∞, Equation (13) implies that limat→∞G (at, et) =

p (et). Similar to Equation (14), the (unconditional) stationary probability distribution of wealth

can be computed as:

G (at) = G (at, eh) +G (at, el) (30)

which can be then used to compute the Gini coefficient in the economy:

G =
1

µ

∞∫
a

G (at) (1−G (at)) dat (31)

where we have defined µ = E (at).
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C Transition probabilities for the endowment of efficiency units

This appendix shows how to derive the limiting (stationary) probability distribution of the endow-

ment of efficiency units defined in Equations (15) and (16) from the arrival rates of the stochastic

process defined by Equation (3).

For illustration purposes consider an individual who is in state el at time s. Let p (el, eh, t) ≡
P (et = eh | es = el) for s ≤ t denote the probability that the individual jumps from state el at time

s to state eh at time t, and φhl and φlh the instantaneous transition rates at which the stochastic

process jumps to state el from state eh, and to state eh from state el, respectively. Then the

transition probabilities at time t can be computed from the solution to the following system of

Backward Kolmogorov equations (see Ross, 2009):

ṗ (eh, eh, t) = φhl [p (el, eh, t)− p (eh, eh, t)] ,

ṗ (el, eh, t) = φlh [p (eh, eh, t)− p (el, eh, t)]

where ṗ (ei, ej , t) = lims→0
1
s [p (ei, ej , t+ s)− p (ei, ej , t)] for all i, j ∈ E , and p (eh, eh, s) = 1 and

p (el, eh, s) = 0 are initial conditions. The solution to this system of ordinary differential equations

is given by:

p (eh, eh, t) =
φlh

φhl + φlh
+

φhl
φhl + φlh

e−(φhl+φlh)(t−s) (32)

p (el, eh, t) =
φlh

φhl + φlh
− φlh
φhl + φlh

e−(φhl+φlh)(t−s). (33)

Now let p (eh, s) denote the unconditional probability of being in state eh at time s. The uncondi-

tional probability of being in the same state at time t > s can be computed according to:

p (eh, t) = p (eh, s) p (eh, eh, t) + (1− p (eh, s)) p (el, eh, t) . (34)

In the limit as t→∞ the unconditional probability of having an endowment of high efficiency

is given by:

lim
t→∞

p (eh, t) = p (eh) =
φlh

φhl + φlh
. (35)

A similar procedure can be used to show that the stationary and unconditional probability of

having an endowment of low efficiency is:

lim
t→∞

p (el, t) = p (el) =
φhl

φhl + φlh
. (36)

The system of equations formed by (32) and (33) together with an appropriate choice of (t− s)
can be used to back out the instantaneous transition rates of the Poisson processes, φhl and φlh

from any probability transition matrix. Given the annual frequency used in the calibration of the

model of Section 2, we set (t− s) = 1 (one year).
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D Computation of the stationary equilibrium

The computation of the stationary density of wealth is done following the method proposed in

Achdou et al. (2017) which consists of two main blocks. The first block computes the stationary

general equilibrium at the macro level by using the following fixed point algorithm in the time-

invariant aggregate capital stock:

Algorithm D.1 (Stationary General Equilibrium) Make an initial guess for the interest rate,

r(0), and then for j = 0, 1, . . . :

1. Compute the optimal consumption functions c(j) (a, eh) and c(j) (a, el) and the subdensities

g(j) (a, eh) and g(j) (a, el).

2. Compute capital demand Kd and capital supply Ks.

3. Update r(j+1) using a combination of bisection, secant, and inverse quadratic interpolation

methods.

4. If
∥∥Ks −Kd

∥∥ < ε stop, otherwise return to step 1.

Algorithm D.1 does not require to update the aggregate labor supply L at each iteration j = 0, 1, . . .

since in our prototype economy the labor supply is assumed to be exogenous as can be seen from

Equation (12).

The second block approximates both the solution to the household’s problem at the micro level

and to the Fokker-Planck equations using the finite difference methods suggested in Candler (1999)

and Achdou et al. (2017). These solutions, which are required in step 2 of Algorithm D.1 for every

iteration j = 0, 1, . . . , are computed in two independent stages. The first stages approximates the

policy functions for consumption that solve the HJB equations (7) and (8), while the second stage

approximates the subdensity functions of wealth that solve the Fokker-Planck equations (17) and

(18).

Solving the Hamilton-Jacobi-Bellman equations.

Consider first the solution to the HJB equations. For each et ∈ E , the finite difference method

approximates the function V (at, et) on an equally spaced grid for wealth with I discrete points,

ai, i = 1, . . . , I, where ai ∈ A = [amin, amax] and amin = a. The distance between points is denoted

by ∆a and we introduce the short-hand notation Ve,i ≡ V (ai, e). The derivative Va (ai, e) ≡ V ′e,i is

computed with either a forward or a backward difference approximation:

V
′F
e,i ≈

Ve,i+1 − Ve,i
∆a

(37)

V
′B
e,i ≈

Ve,i − Ve,i−1

∆a
. (38)
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Following Candler (1999), the choice of difference operator is based on an upwind differentiation

scheme. The correct approximation is based on the direction of the continuous state variable. Thus,

if the saving function, s (ai, e) ≡ se,i = rai+we−(u′)−1
(
V ′e,i

)
, is positive we use a forward operator

and if it is negative we use the backward operator. This gives rise to the following upwind operator:

V ′e,i = V
′F
e,i 1{sFe,i>0} + V

′B
e,i 1{sBe,i<0} + V̄ ′e,i1{sFe,i<0<sBe,i}

(39)

where 1{·} denotes the indicator function and, sFe,i and sBe,i the saving functions computed with the

forward and difference operators respectively. Following Achdou et al. (2017), the concavity of the

value function in the wealth dimension motivates the last term in Equation (39) since there could

be grid points ai ∈ A for which sFe,i < 0 < sBe,i. In those cases, they suggest to set savings to be

equal to zero which implies that the derivative of the value function is equal to V̄ ′e,i = u′ (rai + we).

The finite difference approximation to the HJB equations is then given by11:

ρVe,i = u (ce,i) + V ′e,i [rai + ew − ce,i] + φ−ee [V−e,i − Ve,i]

for each e ∈ E , where optimal consumption is given by:

ce,i =
(
u′
)−1 (

V ′e,i
)
.

The upwind representation of the HJB equation reads:

ρVe,i = u (ce,i) +
Ve,i+1 − Ve,i

∆a
(se,i)

+ +
Ve,i − Ve,i−1

∆a
(se,i)

− + φ−ee [V−e,i − Ve,i] (40)

where:

(se,i)
+ = max

{
rai + we−

(
u′
)−1

(
V
′F
e,i

)
, 0
}

and (se,i)
− = min

{
rai + we−

(
u′
)−1

(
V
′B
e,i

)
, 0
}

denote the positive and negative parts of savings, respectively.

Equation (40) defines a highly non linear system of equations in Ve,i that can only be solved by

iterative methods. We follow Candler (1999) and set up an iterative procedure based on the time-

dependent HJB equation, V l
e,i ≡ V (ai, e, t). Then, from an arbitrary initial condition we integrate

forward in time until the solution is no longer a function of the initial condition, i.e. until it converges

to the time-independent HJB, Ve,i. The time-updating is carried out by means of an implicit scheme

in which the value function at the next time step, V l+1
e,i , is implicitly defined by the equation:

V l+1
e,i − V l

e,i

∆
+ ρV l+1

e,i = u
(
cle,i

)
+
V l+1
e,i+1 − V

l+1
e,i

∆a

(
sle,i

)+

+
V l+1
e,i − V

l+1
e,i−1

∆a

(
sle,i

)−
+ φ−ee

[
V l+1
−e,i − V

l+1
e,i

]
(41)

11The state-constraint boundary condition in Equation (9) is enforced at the lower bound of the state space, amin,

by imposing V
′B
e,1 = u′ (ra1 + we).
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where ∆ is the time step size, cle,i = (u′)−1

[(
V l
e,i

)′]
, and

(
V l
e,i

)′
is given by Equation (39).

Equation (41) constitutes a system of 2× I linear equations in V l+1
e,i with the following matrix

representation:

AlVl+1 = bl (42)

where Vl+1 =
(
V l+1
el,1

, . . . , V l+1
el,I

, V l+1
eh,1

, . . . , V l+1
eh,I

)′
, bl is a vector with elements ble,i = u

(
cle,i

)
+V le,i/∆

and Al is the block matrix:

Al =

[
Ael −Φhl

−Φlh Aeh

]
with Φ−ee = −φ−eeII and

Ae =



ye,1 ze,1 0 . . . 0 0
xe,2 ye,2 ze,2 . . . 0 0
0 xe,3 ye,3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 · · · ye,I−1 ze,I−1

0 0 0 . . . xe,I ye,I


.

where

xe,i =

(
sle,i

)−
∆a

ye,i =
1

∆
+ ρ+

(
sle,i

)+

∆a
−

(
sle,i

)−
∆a

+ φ−ee

ze,i = −

(
sle,i

)+

∆a
.

and e ∈ E . The iterative algorithm used to find the solution to the HJB equation can be summarized

as follows:

Algorithm D.2 (Solution of the HJB equation) Guess V 0
e,i for each e ∈ E and i = 1, . . . , I.

Then for l = 0, 1, 2, . . . :

1. Compute
(
V l
e,i

)′
using Equation (39).

2. Compute cle,i = (u′)−1
(
V ′e,i

)
.

3. Find V l+1
e,i by solving the system of equations defined in (42).

4. If
∥∥∥V l+1

e,i − V l
e,i

∥∥∥ < ε stop. Otherwise, go to step 1.
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Solving the Fokker-Planck equations.

Once the optimal consumption has been computed from Algorithm D.2, we proceed to approximate

the solution to the associated Fokker-Planck equations (17) and (18). As before, we use a finite

difference method and apply it to:

0 = − ∂

∂at
[s (at, el) g (at, el)]− φhlg (at, el)− φlhg (at, eh) , (43)

0 = − ∂

∂at
[s (at, eh) g (at, eh)]− φlhg (at, eh)− φhlg (at, el) (44)

which corresponds, as shown in Appendix B, to an alternative representation of Equations (17) and

(18). We further need to restrict the solution to satisfy the integrability condition:

1 =
∑

et∈{el,eh}

∞∫
−∞

g (at, et) da. (45)

The system of equations (43)-(45) is discretized as follows:

0 = − [se,ige,i]
′ − φ−eege,i − φe,−eg−e,i (46)

1 =
∑

et∈{el,eh}

I∑
i=1

ge,i∆a. (47)

where ge,i ≡ g (ai, e). To approximate the derivative [se,ige,i]
′ we use the upwind differentiation

scheme:

[se,ige,i]
′ =

(se,i)
+ge,i−(se,i−1)+ge,i−1

∆a +
(se,i+1)−ge,i+1−(se,i)

−ge,i
∆a ,

where se,i = rai + we − (u′)−1
(
V
′
e,i

)
is the optimal savings function obtained from the solution

to the HJB equation. Equation (46) defines a system of 2× I linear equations in ge,i with matrix

representation:

Bg = 0 (48)

where g = (gel,1, . . . , gel,I , geh,1, . . . , geh,I)
′. The matrix B is defined as B = Ã>, where Ã =

−A +
(
ρ+ 1

∆

)
I. The matrix Ã captures the evolution of the continuous-time stochastic processes

{at, et}∞t=0. To impose the integrability condition in Equation (45) we follow Achdou et al. (2017)

and fix ge,i = 0.1 for an arbitrary i. Then solve the system of equations in (48) for some g̃, and

proceed to re-normalize ge,i = g̃e,i/(
∑
e,i g̃e,i∆a).
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E Data, estimation settings and robustness check

The cross-section of individual wealth used in Section 7 for the estimation of the Bewley-Aiyagari-

Hugget model is obtained from the 2013 Survey of Consumer Finances (SCF). In particular, our

wealth data matches the net-worth reported in the SCF database. We re-sample the data based on

the survey weights12. For the estimation we only include positive net-worth data (in thousands) to

be consistent with the model’s non-negative borrowing constraint.

Since the data on net-worth used in the estimation is highly skewed and contains a few very

large outliers the use of an uniform grid on the wealth lattice for the approximation of the stationary

probability density function of wealth would result inappropriate. Therefore, we use instead a non-

uniform grid (a log-grid) and modify the solution step accordingly. Details of finite differencing

with non-equally spaced grids can be found in Achdou et al. (2017).

The model’s policy functions and wealth subdensity functions are approximated on a grid with

I = 2000 non-equally spaced points. The maximization of the log-likelihood function is done by

randomly selecting 200 starting values, θ(0), in order to prevent hitting and getting stuck in local

maximum. The standard errors and confidence intervals are computed by means of the parametric

bootstrap. Given a set of estimated parameters, we simulate 128 bootstrap data samples of wealth

and re-estimate the model for each of the bootstrapped samples. The reported standard errors for

the estimated coefficients correspond to the standard errors of the bootstrap estimates, and the

confidence intervals are constructed using the Normal approximation.

As a robustness check we repeat our estimation exercise by including data on employment status

of the household’s head as a proxy for income. This allows us to exploit the model’s implied joint

density of individual wealth and efficiency endowment. Given our extended information set, the

log-likelihood function in Equation (20) becomes:

LN (θ|a, e) =
N∑
n=1

{
1{en=el} log g (an, en|θ) + 1{en=eh} log g (an, en|θ)

}

and the maximum likelihood estimator is given by:

θ̂N = arg max
θ∈Θ

LN (θ | a, e)

where e = [e1, . . . , en] is a sample of N i.i.d observations on household’s head employment status,

1{·} is an indicator function for the type of efficiency endowment. The computation of the model’s

policy functions and the maximization of the log-likelihood function are carried out in the same

way as for the case where the information set only contains a cross-section on individual wealth.

12We have several trials of estimates based on different re-sampled data, the overall estimation results are very
similar.
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Sennewald, K. and K. Wälde (2006): “Itô’s Lemma and the Bellman equation for Poisson

processes: An applied view,” Journal of Economics, 89, 1–36.

Shimer, R. (2005): “The Cyclical Behavior of Equilibrium Unemployment and Vacancies,” Amer-

ican Economic Review, 95, 25–49.

Williams, J. (2017): “Bayesian Estimation of DSGE Models with Heterogeneous Agents,” Un-

published.

Winberry, T. (2016): “A Toolbox for Solving and Estimating Heterogeneous Agent Macro Mod-

els,” Unpublished.

Wong, A. (2016): “Population Aging and the Transmission of Monetary Policy to Consumption,”

2016 Meeting Papers 716, Society for Economic Dynamics.

40


	Introduction
	A prototypical heterogeneous agent model
	Households
	Production possibilities and macroeconomic identity
	Equilibrium
	Distribution of endowments and wealth
	Computation of the equilibrium

	Structural estimation: The likelihood function
	Population identification analysis
	Finite sample properties
	Calibration and estimation
	Empirical illustration
	Conclusions
	Hamilton-Jacobi-Bellman equations
	Fokker-Planck equations
	Transition probabilities for the endowment of efficiency units
	Computation of the stationary equilibrium
	Data, estimation settings and robustness check

