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Chapter 1

Basic mathematical tools

1.1 Topics in integration

Literature: Sydsæter et al. (2005, chap. 4), Wälde (2009, chap. 4.3)

The objective of this chapter is mainly to recall basic concepts on integration and differ-

ential equations and to serve as a reference for later applications.

1.1.1 Definitions

Definition 1.1.1 (Partial derivative) Let f = f(x1, ..., xn) = f(x) where x ∈ Rn, then

∂

∂xi
f = fxi

(1.1)

denotes the partial derivative, i.e., the derivative of f(x) with respect to xi if all the other

variables are held constant.

Definition 1.1.2 (Total derivative) Let f = f(x1, ..., xn) = f(x) where x ∈ Rn, then

df = fx1dx1 + fx2dx2 + ...+ fxndxn =
n∑

i=1

fxi
dxi (1.2)

denotes the total derivative of f(x).

Example 1.1.3 Let f(x1, ..., xn) = 0. Suppose that x3 to xn are held constant. Collecting

terms in (1.2), we obtain
dx1

dx2
= −fx2

fx1

. (1.3)
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This is an example of the implicit function theorem (Sydsæter et al. 2005, Theorem 2.8.1),

as the function f(x1, x2, ..., xn) = 0 implicitly defines x2 = g(x1, x3, x4, ..., xn), and dx2/dx1

is the partial derivative of this implicit function with respect to x1.

Definition 1.1.4 (Indefinite integral) Let f(x) be a continuous function. The indefinite

integral of f(x) is defined as any function F (x) satisfying

∫

f(x)dx = F (x) where F ′(x) ≡ d

dx
F (x) = f(x). (1.4)

The term d/dx often is referred to as the differential operator. This definition implies that

there is a infinite number of integrals (or solutions). If F (x) is an integral, then F (x) + C,

where C is a constant, is an integral as well.

Definition 1.1.5 (Definite integral) Let f(x) be a continuous function. The definite in-

tegral of f(x) is defined as any function F (x) satisfying

∫ b

a

f(x)dx =

∣
∣
∣
∣

b

a

F (x) = F (b) − F (a) where F ′(x) = f(x) for all x in (a, b). (1.5)

If f(x) ≥ 0 in the interval [a, b], then
∫ b

a
f(x)dx is the area under the graph of f over [a, b].

Note the following implications of (1.5),

d

dx

∫ x

a

f(t)dt = f(x),
d

dx

∫ b

x

f(t)dt = −f(x), (1.6)

because
∫ x

a
f(t)dt = F (x) − F (a).

Definition 1.1.6 Let f(x) be a continuous function. If f is integrable over an infinite

interval, and if the limit of the following expressions exists,

∫ b

−∞
f(x)dx ≡ lim

a→−∞

∫ b

a

f(x)dx, (1.7)

∫ ∞

a

f(x)dx ≡ lim
b→∞

∫ b

a

f(x)dx, (1.8)

∫ ∞

−∞
f(x)dx ≡ lim

a→−∞

∫ c

a

f(x)dx+ lim
b→∞

∫ b

c

f(x)dx, c ∈ R, (1.9)

we refer to F (x) as defined in either (1.7) to (1.9) as the improper integral of f(x).

Definition 1.1.7 A function f : R → R is said to be of class Ck (k = 1, 2, ...) if all of

its partial derivatives of order up to and including k exist and are continuous. Similarly, a
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transformation f = (f1, ..., fm) from (a subset of) Rn → Rm is said to be of class Ck if each

of its component functions f1, ..., fm is Ck.

1.1.2 Rules of transformation

Two useful ways to transform an integral involve integration by parts (1.10) and integration

by substitution, or change of variable formula (1.11).

Proposition 1.1.8 For two differentiable functions f(x) and g(x),

∫

f(x)g′(x)dx = f(x)g(x) −
∫

f ′(x)g(x)dx. (1.10)

Proof. Use the product rule and integrate.

Proposition 1.1.9 For two differentiable functions f(x) and g(u) where x = g(u),

∫

f(x)dx =

∫

f(g(u))g′(u)du. (1.11)

Proof. Define H(u) as the integral of h(u) = f(g(u))g ′(u) and apply the chain rule.

Exercise 1.1.10 Show that for definite integrals integration by parts is

∫ b

a

f(x)g′(x)dx =

[

f(x)g(x)

]b

a

−
∫ b

a

f ′(x)g(x)dx, (1.12)

and the formula for integration by substitution where x = g(u) is

∫ b

a

f(x)dx =

∫ u2

u1

f(g(u))g′(u)du, g(u1) = a, g(u2) = b, (1.13)

where u2 = g−1(b) and u1 = g−1(a).

1.1.3 Differentiation under the integral sign

Integrals appearing in economics often depend on parameters. In comparative static analysis,

we compute the change of the value of the integral with respect to a change in the parameter.

An important rule for computing the derivative of an integral is Leibniz’s formula (Sydsæter

et al. 2005, Theorem 4.2.1). Let F (x) be a continuous function defined by

F (x) =

∫ b(x)

a(x)

f(x, t)dt, (1.14)
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where a(x), b(x) and f(x, t) are differentiable. Then, the Leibniz formula gives the derivative

of this function with respect to x as

d

dx
F (x) = f(x, b(x))b′(x) − f(x, a(x))a′(x) +

∫ b(x)

a(x)

∂f(x, t)

∂x
dt. (1.15)

To prove this result, observe that F can be interpreted as a function of three variables,

F (x) = H(x, a(x), b(x)).

According to the chain rule, we obtain

F ′(x) = Hx +Haa
′(x) +Hbb

′(x),

where Hx is the partial derivative of h w.r.t. x with a and b as constants, Hx =
∫ b

a
fx(x, t)dt

(Sydsæter et al. 2005, p.154). Moreover, according to (1.6), Hb = f(x, b) and Ha = −f(x, a).

Inserting these results again gives the Leibniz formula.

Exercise 1.1.11 The present discounted value of a continuous flow f(t), t ∈ [s, T ], given

the constant rate r is

V (s, r) =

∫ T

s

f(t)e−(t−s)rdt, r ∈ R+.

Find Vs(s, r) and Vr(s, r) by means of Leibnitz’s rule and interpret your results.

Exercise 1.1.12 In a growth model, the total labor force reads

N(t) =

∫ t

t−T (t)

n(u)e−(t−u)δdu, δ ∈ R+.

where n(u) is the number of workers available for operating new equipment, δ its a constant

depreciation rate, and T (t) denotes the lifetime of equipment as governed by obsolescence.

Compute the growth in working population, Ṅ(t), and interpret the result.

Exercise 1.1.13 Find the integrals of the following problems

1. ∫
4x3 + 3x2

x4 + x3 + 1
dx (hint: integration by substitution),

2.
∫ e2

e

1

x ln x
dx (hint: integration by substitution),
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3. ∫

x ln xdx (hint: integration by parts),

4. ∫
x− 1

x2 − x− 2
dx (hint: integration by partial fractions),

5. ∫
x3 − 2x

x2 + 2
dx (hint: polynomial long division).

1.2 Recap differential equations

Literature: Sydsæter et al. (2005, chap. 5, 6), Wälde (2009, chap. 4.1)

1.2.1 Definitions

Unlike ordinary algebraic equations, in a differential equation we are looking for a path or a

function instead of a number. The equation includes one or more derivatives of the function.

The following definitions give a more formal description.

Definition 1.2.1 (ODE) An ordinary differential equation is an equation of a function and

its derivatives x′, x′′, ..., xk and the exogenous variable t,

F (t, x(t), ẋ(t), ẍ(t), ...) = 0, (1.16)

where k determines the order as long as we can explicitly solve for this variable.

Definition 1.2.2 (ODE system) A system of first-order ODEs is of the type

dx

dt
≡ ẋ = f(t, x(t)), (1.17)

where t ∈ [t0,∞) and the vector x ∈ Rn. The function f(·) maps from Rn+1 into Rn.

Definition 1.2.3 (Linear ODE) Suppose f(·) is a linear mapping, then for n = 1 equation

(1.17) is a linear ODE,

ẋ+ a(t)x = b(t), (1.18)

where a(t) and b(t) denote continuous functions of t and x(t) is the unknown function.
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Definition 1.2.4 (Separability) Suppose ẋ = F (t, x), where F (t, x) can be written as

ẋ = f(t)g(x). (1.19)

We then refer to F (t, x) as separable in t and x. If t is not explicitly present, the equation

is called autonomous. Any autonomous equations is also separable.

It is important to learn to distinguish between separable and nonseparable equations, because

separable equations are among those that can be solved in terms of integrals of known

functions (for some examples see Sydsæter et al. 2005, chap. 5.3).

1.2.2 Separable and first-order differential equations

The following techniques are useful for many applications in economics. After obtaining an

intuition of a solution, we quickly recap methods for solving separable equations, first-order

linear differential equations and solution techniques via transformations.

Slope fields

Slope fields are especially useful to obtain a feeling for a solution. Consider a one dimensional

first-order differential equation of the type ẋ = f(t, x) as in (1.18). Drawing straight-line

segments or vectors with slopes f(t, x) through several points in the (t, x)-plane gives us a

so-called directional diagram (or slope field).

Exercise 1.2.5 Draw a direction diagram for the differential equation ẋ = x + t and draw

the integral curve through (0, 0) in the (t, x)-plane.

Slope fields intuitively suggest that a solution of a differential equation in general is

not unique, that means its solution are integral curves that can be made unique if further

restrictions are applied. A restriction then forces a unique solution.

Example 1.2.6 (Isoquants of perfect substitutes) Let Y = aK + bL be a production

function where a, b > 0. Y denotes output, and K, and L are inputs of capital stock and

labor, respectively. An isoquant is defined by Ȳ ≡ Y ∈ R+. Observe that

K = Ȳ − b

a
L. (1.20)

Differentiating with respect to L gives a differential equation of the form dK/dL = −b/a.
The solution to this differential equation is given by the integral curves (1.20).
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Figure 1.1: Isoquants of perfect substitutes
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Figure 1.2: Isoquants in the Cobb-Douglas case
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Example 1.2.7 (Isoquants in the Cobb-Douglas case) Let Y = KαL1−α describe a

production function where 0 < α < 1. Y denotes output, and K, and L are inputs of capital

stock and labor, respectively. An isoquant is defined by Ȳ ≡ Y ∈ R+. Observe that

K = Ȳ
1
αL

α−1
α . (1.21)

Differentiating with respect to L gives a differential equation of the form

dK

dL
=
α− 1

α
(Ȳ /L)

1
α =

α− 1

α
K/L ⇔ K ′ = c1K/L, c1 ≡

α− 1

α
. (1.22)

The solution to this differential equation is given by the integral curves (1.21).

Separable equations

Assume in the following a differential equation of the type (1.19), that is ẋ = f(t)g(x).

Note that this equation has to be homogeneous to be separable. The first solution technique

simply is an application of the integration by substitution.

1. For g(x) 6= 0 divide by g(x), multiply (1.19) by dt and integrate using h(x) = 1/g(x)

∫

h(x)ẋdt =

∫

f(t)dt =: F (t) + c1.

2. According to the change of variable formula (1.11)

∫

h(x)ẋdt =

∫

h(x)dx =: H(x) + c2.

3. The general solution to (1.19) is H(x) = F (t)+C, where H ′(x) = 1/g(x), F ′(t) = f(t),

and C is a constant. If H is invertible, one can explicitly solve for x,

x(t) = H−1(F (t) + C).

4. For g(x) = 0, we obtain the constant solution x(t) = a.

The second method is by separating the variables (Sydsæter et al. 2005, p.191),

1. For g(x) 6= 0 write (1.19) as
dx

dt
= f(t)g(x).
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2. Separate the variables
dx

g(x)
= f(t)dt.

3. Integrate each side ∫
dx

g(x)
=

∫

f(t)dt.

Evaluate the two integrals and obtain a solution of (1.19), possibly in implicit form.

4. For g(x) = 0, we obtain the constant solution x(t) = a.

For illustration, let F (t) be the integral of f(t), and g(x) = x then

H(x) =

∫

h(x)dx =

∫
dx

g(x)
= ln |x| + C = F (t) + C

⇔ x = eF (t)+C = c1e
F (t), c1 = eC

is the general solution to the differential equation of the type (1.19). If H(x) is invertible,

x(t) = H−1 (F (t) + C) , C ∈ R. (1.23)

For the simplest case where g(x) = x, the general solution reads x(t) = c1e
F (t).

Exercise 1.2.8 Find the general solution to the differential equation ẋ = 1/x.

Exercise 1.2.9 (Economic growth) Let Yt ≡ Y (t) denote aggregate output, Kt ≡ K(t)

the capital stock, and Lt ≡ L(t) the number of workers at time t. Suppose for all t ≥ 0

Yt = Kα
t L

1−α
t , 0 < α < 1,

K̇t = sYt, K0 > 0,

Lt = L0e
nt,

where α, s,K0, L0 and n are all positive constants. Determine the evolution of the capital

stock given an initial level of capital stock K0 and workers L0.

First-order linear differential equations

Assume in the following a differential equation of the type (1.18). This equation is called

linear because the left-hand side is a linear function of x and ẋ.
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In the simplest case, we consider (1.18) with a and b as constants, where a 6= 0,

ẋ+ ax = b. (1.24)

To solve this equation, we multiply by the positive factor eat, called an integrating factor.

We then get the equation,

ẋeat + axeat = beat.

This turns out to be a good idea, since the left-hand side happens to be the derivative of

the product xeat. Thus (1.24) is equivalent to

d

dt
(xeat) = beat.

Multiplying by dt and integrating both sides yields

xeat =

∫

beatdt+ C = (b/a)eat + C,

where C is a constant. Multiplying by e−at gives the solution to (1.24) as,

x(t) = b/a + e−atC. (1.25)

Comparing this result to the general solution (1.23), it is notable that the solution to the

inhomogeneous equation is the general solution of the associated homogeneous equation and

a particular solution of the non-homogeneous equation.

Remark 1.2.10 The set of solutions of a differential equation is called its general solution,

while any specific function that satisfies the equation is called a particular solution.

This solution technique using the integrating factor can be applied immediately also to

the case where a is a constant, and b(t) is time varying,

ẋ+ ax = b(t) ⇒ x(t) = Ce−at + e−at

∫

eatb(t)dt. (1.26)

For the general case (a 6= 0) as in (1.18), the trick used for solving the equation has to

be modified as follows. Multiply (1.18) by the integrating factor eA(t), to obtain

ẋeA(t) + a(t)xeA(t) = b(t)eA(t).

We need to find an A(t) such that the left-hand side of this equation equals the derivative
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of xeA(t). Note that the derivative is ẋeA(t) + Ȧ(t)xeA(t). We therefore make A(t) satisfy

Ȧ(t) = a(t) by choosing A(t) =
∫
a(t)dt. This makes (1.18) equivalent to

d

dt

(
xeA(t)

)
= b(t)eA(t).

Multiplying by dt and integrating gives

xeA(t) =

∫

b(t)eA(t)dt+ C, A(t) =

∫

a(t)dt.

Collecting terms gives the solution as

x(t) = e−
∫

a(t)dt

(

C +

∫

e
∫

a(t)dtb(t)dt

)

. (1.27)

A general approach of determining the solution of (1.18), especially useful for higher-

order differential equations, is the method of variation of parameters. This method makes it

possible always to find a particular solution provided the general solution of the associated

homogeneous differential equation is known. Recall that any solution of (1.18) satisfies

x(t) = x∗(t) + z(t), (1.28)

where x∗(t) is a particular solution, and z(t) is the general solution of the homogeneous

differential equation associated with (1.18), ż = −a(t)z. Note that this equation clearly is

time separable and we can use (1.23) to obtain the general solution as

z(t) = Ce−
∫

a(t)dt ≡ Cv(t), v(t) ≡ e−
∫

a(t)dt.

The key step in using variation of parameters is to suppose that the particular solution reads

x∗(t) = u(t)v(t) = u(t)e−
∫

a(t)dt,

where u(t) is an yet to be determined function.

Since this solution should be a particular solution of (1.18), we substitute x∗(t) to obtain

u̇e−
∫

a(t)dt − a(t)u(t)e−
∫

a(t)dt + a(t)u(t)e−
∫

a(t)dt = b(t)

⇔ u̇ = b(t)e
∫

a(t)dt.
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We reduced the problem to a simple differential equation which has the solution

u(t) =

∫

b(t)e
∫

a(t)dtdt+ c1 ⇒ x∗(t) = e−
∫

a(t)dt

∫

b(t)e
∫

a(t)dtdt,

where c1 is a constant which can be neglected as we need only one particular solution. Thus,

the general solution is given as derived using the integrating factor in (1.27), again

x(t) = e−
∫

a(t)dt

(

C +

∫

e
∫

a(t)dtb(t)dt

)

. (1.29)

Example 1.2.11 (Integral equation) A differential equation always can be written as an

integral equation. For illustration, consider the differential equation ẋ = f(t, x). Separating

terms and integrating both sides yields,

dx = f(t, x)dt ⇒
∫

dx =

∫

f(t, x)dt

⇒ x(t) = x0 +

∫

f(t, x)dt.

Differentiating with respect to time again using (1.15) yields ẋ = f(t, x). Note this is yet

another form of representation, but not necessarily a solution of the differential equation.

Example 1.2.12 (Intertemporal budget constraint) Consider the dynamic budget con-

straint, ȧt ≡ ȧ(t) = f(t, at) = rtat + wt − ct given initial wealth a0 = a(0) ∈ R. Solving the

differential equation using the integrating factor in (1.27) gives

at = e
∫ t
0 rsds

(

a0 +

∫ t

0

e−
∫ u
0 rsds(wu − cu)du

)

.

We refer to e
∫ t

0
rsds as the discount factor. Collecting terms, we obtain an intuitive economic

interpretation of the intertemporal budget constraint (backward solution),

e−
∫ t
0 rsdsat +

∫ t

0

e−
∫ u
0 rsdscudu = a0 +

∫ t

0

e−
∫ u
0 rsdswudu.

The sum of the present value of individual wealth and the present value of future consumption

expenditures at time t equal initial wealth and the present value of future income.

Exercise 1.2.13 (Growth at constant rate) Let Pt ≡ P (t) denote the size of population

at time t which grows at constant growth rate n. Describe the law of motion for the population

size and solve the associated differential equation. When does the population size double?
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Example 1.2.14 (Endogenous growth) Let Yt = AKt denote aggregate output where

A ∈ R+ is total factor productivity, Kt is the capital stock. The market clearing condition

demands sYt = K̇t, thus K̇t = sAKt. Separating the variables gives the solution as

Kt = K0e
sAt ⇒ Yt = K0Ae

sAt.

Both variables the capital stock and aggregate output are growing exponentially at the same

constant rate without imposing an exogenous source of growth.

Reducible differential equations

Only in very special cases, differential equation have solutions given by explicit formu-

las. However, transformation sometimes may convert an apparently complicated differential

equation into one of a familiar type. A well known example is Bernoulli’s equation.

An equation of the type

ẋ + a(t)x = b(t)xr, (1.30)

where the exponent r is a fixed real number, and where a(t) and b(t) are given continuous

functions is called Bernoulli’s equation or reducible differential equation. Note that if r = 0,

the equation is linear, and if r = 1, it is separable, since ẋ = (b(t)−a(t))x. We now introduce

the following solution technique. Let x(t) > 0 for all t, so that the power xr is always well

defined. Now divide by xr and introduce the transformation

z = x1−r. (1.31)

Observe that ż = (1 − r)x−rẋ, and substituting into ẋx−r + a(t)x1−r = b(t) yields

1

1 − r
ż + a(t)z = b(t) ⇔ ż + (1 − r)a(t)z = (1 − r)b(t),

which is a linear differential equation for z = z(t). Once z(t) has been found, we simply use

(1.31) to determine x(t), which then is the solution of (1.30).

Exercise 1.2.15 Solve the reducible differential equation dPt = cPt(1 − λPt)dt, known as

Verhulst equation (growth with carrying capacity 1/λ, logistic growth) where λc denotes the

speed of reversion measuring how much the growth rate of Pt declines as Pt increases.

Remark 1.2.16 For an economic model to be consistent, the equations in that model must

have a solution. If a solution does exist that satisfies the relevant boundary conditions, we

are interested whether the solution is unique. Answers to such questions are provided by

existence and uniqueness theorems (see Sydsæter et al. 2005, chap. 5.8).
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1.2.3 Second-order differential equations and systems in the plane

Many economic models are based on differential equations in which second- or higher-order

derivatives appear. The following sections recap second-order differential equations and

systems in the plane before we proceed with linear approximations of nonlinear systems.

Second-order linear differential equations

The general second-order linear differential equation is

ẍ + a(t)ẋ+ b(t)x = f(t), (1.32)

where a(t), b(t), and f(t) are all continuous functions of t. Recall that

z̈ + a(t)ż + b(t)z = 0, (1.33)

is the associated homogeneous equation of (1.32). The following theorem suggest that in

order to find the paths x(t) that solve (1.32), i.e. to find its general solution, we have to find

the general solution to (1.33) and a particular solution to (1.32).

Theorem 1.2.17 (cf. Sydsæter et al. 2005, Theorem 6.2.1) The general second-order

linear differential equation (1.32),

ẍ+ a(t)ẋ + b(t)x = f(t)

has the general solution

x(t) = x∗(t) + z(t),

where x∗(t) is any particular solution of the nonhomogeneous equation. Further, the function

z(t) solves the associated homogeneous equation with the general solution,

z(t) = c1v1(t) + c2v2(t),

where v1(t) and v2(t) are two solutions that are not proportional, and c1 and c2 are constants.

For illustration, we consider finding a general solution to the homogeneous equation with

constant coefficients,

ẍ+ aẋ + bx = 0, (1.34)

where a and b are arbitrary constants, and x(t) is the unknown function. According to

the theorem, finding the general solution of (1.34) requires to discover two solutions v1(t)
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and v2(t) that are not proportional. Recall that for first-order differential equations with

constant coefficients, the general solution is x(t) = e−atC. A possible solution therefore is

x = eλt, ẋ = λeλt, ẍ = λ2eλt,

and try adjusting the constant λ in order that x = eλt satisfies (1.34). Inserting gives

eλtλ2 + aeλtλ+ beλt = 0 ⇒ λ2 + aλ+ b = 0, (1.35)

which is the characteristic equation of the differential equation (1.34). This is a quadratic

equation whose two characteristic roots are obtained by solving the quadratic formula,

λ1,2 = −1
2
a± 1

2

√
a2 − 4b.

There are three different cases to consider that are replicated in the following theorem.

Theorem 1.2.18 (cf. Sydsæter et al. 2005, Theorem 6.3.1) The general solution of

ẍ+ aẋ + bx = 0 is as follows,

(i) if a2 − 4b > 0, there are two distinct real roots,

x(t) = c1e
λ1t + c2e

λ2t, where λ1,2 = −1
2
a± 1

2

√
a2 − 4b,

(ii) if a2 − 4b = 0, there is one real double root,

x(t) = c1e
λ1t + tc2e

λ2t, where λ1 = λ2 = −1
2
a,

(iii) if a2 − 4b < 0, there are two conjugate complex roots,

x(t) = eαt(c1 cos βt+ c2 sin βt), where α = − 1
2
a, β = 1

2

√
4b− a2,

for any arbitrary constants c1, c2 ∈ R.

Note that although the roots of the characteristic equation are complex for a2 < 4b, we

can obtain real-valued solutions in all three cases (cf. Sydsæter et al. 2005). Moreover, we

only have explained how to obtain the general solution to (1.33) which solves the associated

homogeneous equation. But how do we find a particular solution x∗(t)? In fact the method

of undetermined coefficients works in many cases (Sydsæter et al. 2005, p.229).
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• f(t) = A is a constant

In this case we check to see if (1.32) has a solution that is constant, x∗ = c, ẋ∗ = ẍ∗ = 0,

so the equation reduces to bc = A. Hence, c = A/b for b 6= 0.

• f(t) is a polynomial of degree n

A reasonable guess is that x∗(t) = Ant
n + An−1t

n−1 + ... + A1t + A0 is also a polyno-

mial of degree n. We then determine the undetermined coefficients An, An−1, ..., A0 by

requiring x∗(t) to satisfy (1.32) and equating coefficients of like powers of t.

• f(t) = peqt

A natural choice is x∗(t) = Aeqt. Insert the guess and find that if q2 + aq + b 6= 0, the

particular solution is x∗(t) = p/(q2 + aq + b)eqt. If q2 + aq + b = 0, and we either look

for constants B or C such that Bteqt or Ct2eqt is a solution.

• f(t) = p sin rt+ q cos rt

Let x∗(t) = A sin rt+B cos rt and adjust constants A and B such that the coefficients

of sin rt and cos rt match. If f(t) is itself a solution of the homogeneous equation, then

x∗(t) = At sin rt+Bt cos rt is a particular solution for suitable choices of A and B.

Simultaneous equations in the plane

Many dynamic economic models, especially in macroeconomics, involve several unknown

functions that satisfy a number of simultaneous differential equations. Consider the following

system as a special case of the system in vector notation (1.17),

ẋ = f(t, x, y),

ẏ = f(t, x, y).
(1.36)

A solution of (1.36) is a pair of differentiable functions (x(t), y(t)) satisfying both equations.

For illustration, consider the following system of linear differential equations,

ẋ = a11x + a12y + b1(t), (1.37)

ẏ = a21x + a22y + b2(t). (1.38)

Note that this two-dimensional system of first-order differential equations can be written as a

one-dimensional second-order differential equation (and vice versa) as follows. Without loss

of generality let a12 6= 0 (note that either a12 or a21 has to be different from zero, otherwise
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x and y are two isolated systems). Observe that using (1.37),

y =
1

a12

ẋ− a11

a12

x− 1

a12

b1(t),

ẏ =
1

a12

ẍ− a11

a12

ẋ− 1

a12

ḃ1(t).

Inserting into (1.38) and collecting terms yields

1

a12
ẍ− a11

a12
ẋ− 1

a12
ḃ1(t) = a21x + a22

(
1

a12
ẋ− a11

a12
x− 1

a12
g(t)

)

+ b2(t),

⇔ ẍ− (a11 + a22)
︸ ︷︷ ︸

tr(A)

ẋ + (a11a22 − a12a21)
︸ ︷︷ ︸

det(A)

x = −a22b1(t) + a12b2(t) + ḃ1
︸ ︷︷ ︸

b(t)

,

where we could define a matrix A,

A ≡
(

a11 a12

a21 a22

)

,

such that (

ẋ

ẏ

)

= A

(

x

y

)

+

(

b1(t)

b2(t)

)

is written as the two-dimensional system (1.37) to (1.38) in matrix notation. Thus, we could

solve the second-order differential equation in the usual way. Note that for recursive systems,

where one of the two variables varies independently of the other, the solution techniques can

simply be replaced by a step-by-step procedure.

An alternative approach would be the method of undetermined coefficients based on

eigenvalues. With b1 = b2 = 0, system (1.37) and (1.38) reduces to the homogeneous system

(

ẋ

ẏ

)

= A

(

x

y

)

. (1.39)

Using the approach x = c1e
λt and y = c2e

λt, we obtain

(

λc1e
λt

λc2e
λt

)

= A

(

c1e
λt

c2e
λt

)

⇒ A

(

c1

c2

)

= λ

(

c1

c2

)

⇔ (A− λI)

(

c1

c2

)

= 0.

Observe that (c1, c2)
> is the associated eigenvector of the matrix A with eigenvalue λ. The
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eigenvalues are the solution of the equation

∣
∣
∣
∣
∣

a11 − λ a12

a21 a22 − λ

∣
∣
∣
∣
∣
= λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0.

Recall that for eigenvalues λ1 and λ2 of a two-dimensional matrix the following holds,

λ1λ2 = det(A), λ1 + λ2 = tr(A)

⇒ λ1,2 = 1
2
tr(A) ± 1

2

√

(tr(A))2 − 4det(A),

similar to the roots of the characteristic equation of second order. For the case in which A

has different real eigenvalues λ1 and λ2 (for (tr(A))2 > 4det(A)), then A has two linearly

independent eigenvectors (v1, v2)
> and (u1, u2)

>, and the general solution of (1.39) is

(

x

y

)

= d1e
λ1t

(

v1

v2

)

+ d2e
λ2t

(

u1

u2

)

, (1.40)

where d1 and d2 are arbitrary constants.

Exercise 1.2.19 Solve the following system of equations,

(

ẋ

ẏ

)

= A

(

x

y

)

, A =

(

0 2

1 1

)

.

Linear approximation of systems of differential equations

Suppose we have a nonlinear autonomous system of differential equations of the type

ẋ = f(x, y),

ẏ = g(x, y).
(1.41)

Let (x∗, y∗) an equilibrium point (or an equilibrium state) for the system (1.41),

(

0

0

)

=

(

f(x∗, y∗)

g(x∗, y∗)

)

.

If (x, y) is sufficiently close to (x∗, y∗), then Taylor’s formula gives as a linear approximations,

f(x, y) ≈ f(x∗, y∗) + fx(x
∗, y∗)(x− x∗) + fy(x

∗, y∗)(y − y∗),

g(x, y) ≈ g(x∗, y∗) + gx(x
∗, y∗)(x− x∗) + gy(x

∗, y∗)(y − y∗).
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Because f(x∗, y∗) = g(x∗, y∗) = 0,

f(x, y) ≈ fx(x
∗, y∗)x+ fy(x

∗, y∗)y − fxx
∗ − fyy

∗

= a11x+ a12y − b1,

g(x, y) ≈ gx(x
∗, y∗)(x− x∗) + gy(x

∗, y∗)(y − y∗)

= a21x+ a22y + b2.

It is therefore reasonable to expect that in a neighborhood of (x∗, y∗), the nonlinear system

(1.41) behaves approximately like the linear system

(

ẋ

ẏ

)

= A

(

x

y

)

+

(

b1

b2

)

. (1.42)

A is the Jacobian matrix of the nonlinear system around the equilibrium state. Note that

b1 and b2 imply that (x∗, y∗) is also an equilibrium point in the linearized system.

Remark 1.2.20 Note that the local dynamics of the nonlinear system can be analyzed using

the linear approximation as long as A does contain eigenvalues with their real parts different

from zero (Theorem of Hartman-Grobman).

1.3 Qualitative theory

Literature: Sydsæter et al. (2005, chap. 5.7, 6.4 to 6.9), Wälde (2009, chap. 4.2)

Most kinds of economic models involve differential equations do not have the nice property

that their solutions can be expressed in terms of elementary functions. Nevertheless, often it

is desirable to analyze at least the qualitative behavior of the economic model. The following

sections recap the elementary tools to analyze qualitative properties of differential equations.

1.3.1 Definitions

To shed light on the structure of solutions to differential equations that are not explicitly

available, we shall introduce the following definitions. For simplicity, we restrict our attention

to the two-dimensional case. However, extending the methods for multi-dimensional systems

is straightforward, but involves notationally cumbersome derivations.

Definition 1.3.1 Consider an autonomous nonlinear system of differential equations,

ẋ = f(x, y),

ẏ = g(x, y).
(1.43)
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An equilibrium point (x∗, y∗) of the system (1.43) is called locally asymptotically stable, if

any path starting near (x∗, y∗) tends to (x∗, y∗) as t→ ∞, or simply

lim
t→∞

x = x∗, lim
t→∞

y = y∗.

An equilibrium point (x∗, y∗) of this system is called globally asymptotically stable, if any

path (wherever it starts) converges to (x∗, y∗) as t→ ∞.

For simplicity, we consider the case of an autonomous linear system as in (1.42) which

can actually be thought of as an linearized system around an equilibrium point.

Theorem 1.3.2 (cf. Sydsæter et al. (2005), Theorem 6.6.1) Suppose that |A| 6= 0.

Then the equilibrium point (x∗, y∗) for the linear system

(

ẋ

ẏ

)

= A

(

x

y

)

+

(

b1

b2

)

is globally asymptotically stable if and only if

tr(A) = a11 + a22 < 0, det(A) = a11a22 − a12a21 > 0,

or equivalently, if and only if all eigenvalues of A have negative real parts.

An intuitive explanation can be obtained from the solution (1.40), where each of the

eigenvalues has to be negative in order to ensure global asymptotic stability. If the equilibrium

point is not necessarily globally asymptotically stable, disregarding the case where one or

both eigenvalues are 0, the dynamic behavior quickly can be categorized as follows.

1. If both eigenvalues of A have negative real parts, then (x∗, y∗) is globally asymptotically

stable (a sink). All solutions converge to the equilibrium point as t→ ∞.

2. If both eigenvalues of A have positive real parts, then all solutions starting away from

(x∗, y∗) explode as t increases, and the equilibrium point is a source.

3. If the eigenvalues of A are real with opposite signs, in other words if the determinant

is negative, λ1 < 0 and λ2 > 0, then (x∗, y∗) is a saddle point. Solutions are either

diverging from or converging to the equilibrium point as t→ ∞.

4. If the eigenvalues are purely imaginary, i.e. complex eigenvalues with zero real parts

but nonzero imaginary parts, then (x∗, y∗) is a centre. All solution curves are periodic

with the same period in the form of ellipses or circles.
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Example 1.3.3 Consider the system ẋ = 2y and ẏ = 3x − y with equilibrium point (0, 0).

Using f(x, y) = 2y and g(x, y) = 3x− y, the coefficient matrix A is

A =

(

0 2

3 −1

)

.

Because det(A) = −6, i.e. the eigenvalues are real with opposite signs, the equilibrium

point (x∗, y∗) is a saddle point. The associated eigenvector from the negative eigenvalue is

(u1, u2)
> = (−2, 3)> which points in the direction of the stable path.

1.3.2 Autonomous equations, phase diagrams and stability

Many differential equations are of the type or can be expressed in the autonomous form

ẋ = F (x(t)), (1.44)

which is a special case of the equation F (t, x(t)) where Ft = 0. We refer to equation (1.44)

as autonomous. To examine the properties of the solution to (1.44), it is useful to study its

phase diagram. This is obtained by plotting ẋ against x in the xẋ-plane.

An important property of a differential equation is whether it has any equilibrium or

steady states. Moreover, it is also very useful to know whether an equilibrium state is stable.

Once we have obtained an understanding about the dynamics in a phase diagram, often the

dynamics of the corresponding directional diagram (in the tx-plane) are straightforward.

Suppose that a is an equilibrium state for ẋ = F (x), so that F (a) = 0. If the slope of ẋ

at the equilibrium state is negative, F ′(a) < 0, then F (x) is positive to the left of x = a and

negative to the right in a close neighborhood. Hence, we can derive the following results,

F (a) = 0 and F ′(a) < 0 ⇒ a is locally asymptotically stable,

F (a) = 0 and F ′(a) > 0 ⇒ a is unstable.

Example 1.3.4 (Price adjustment mechanism) Suppose price changes are determined

by a function of excess demand, D(pt)− S(pt) where D(pt) and S(pt) are aggregate demand

and supply, respectively, satisfying the nonlinear equation

ṗt = F (pt) = H(D(pt) − S(pt)).

Assume that the function H satisfies H(0) = 0 and H ′ > 0. If demand exceeds supply at

price pt, then D(pt) − S(pt) > 0, so ṗt > 0, and the price increases (and vice versa). The
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equilibrium price p∗ equalizes supply and demand such that H(D(p∗) − S(p∗)) = 0. Observe

that F ′(pt) = H ′([D′(pt)− S ′(pt)]), and p∗ is locally asymptotically stable, if D′(pt) < S ′(pt),

which holds for the plausible assumptions D′(pt) < 0 and S ′(pt) > 0.

Exercise 1.3.5 Illustrate the phase diagram of the reduced form for Solow’s growth model,

k̇ = sf(k) − δk, f(0) = 0, f ′(k) > 0, f ′′(k) < 0 ∀ k > 0,

where s > 0 and δ > 0 denote a constant rate of saving and depreciation respectively, in the

kk̇-plane. Analyze the stability properties in this model.

1.3.3 Phase plane analysis and stability for nonlinear systems

Even when explicit solutions are unavailable, geometric arguments can still shed light on the

structure of the solutions of autonomous systems of differential equations in the plane,

ẋ = f(x, y), ẏ = g(x, y). (1.45)

A solution (x(t), y(t)) describes a curve or path in the xy-plane. For autonomous problems,

if (x(t), y(t)) is a solution, then (x(t + a), y(t + a)) is a solution and both solutions have

the same path. Note that (ẋ, ẏ) is uniquely determined at the point (x, y) and two paths in

the xy-plane cannot intersect. The phase plane analysis is concerned with the technique of

studying the behavior of paths in the phase plane.

Vector fields

It follows from (1.45) that the rates of change of x(t) and y(t) are given by f(x, y) and

g(x, y), respectively. In particular if f(x, y) > 0 and g(x, y) > 0, then as t increases, the

system will move from a point P in the xy-plane up and to the right. In fact, the direction

of motion is given by the tangent vector (ẋ(t), ẏ(t)) at P , while the speed of motion is given

by the length of that vector. A family of such vectors, which in practice is only a small

representative sample, is called a vector field. On the basis of the vector field one can draw

paths for the system and thereby the phase diagram of the system.

In general, a point (a, b) where f(a, b) = g(a, b) = 0 is called an equilibrium for system

(1.45). The equilibrium points are the points of intersection of the two curves f(x, y) = 0

and g(x, y) = 0, which are called the nullclines of the system. To draw a phase diagram,

we begin by drawing the two nullclines. At each point on the nullcline f(x, y) = 0 the ẋ

component is 0, and the velocity vector is vertical. It points up if ẏ > 0, and down if ẏ < 0.
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Figure 1.3: Equilibrium point is a sink
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Figure 1.4: Equilibrium point is a source
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Figure 1.5: Equilibrium point is a saddle point
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Figure 1.6: Equilibrium point is a centre
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Similarly, at each point on the nullcline g(x, y) = 0. the ẏ component is 0, and the velocity

vector is horizontal. It points to the right if ẋ > 0, to the left if ẋ < 0.

Exercise 1.3.6 Draw a vector field for the following system describing a model of economic

growth in the (k, c)-plane assuming that k ≥ 0 and c ≥ 0. Suppose the capital stock, k(t),

and consumption, c(t), satisfy the pair of differential equations

k̇ = 2.5k − 0.5k2 − c,

ċ = (0.625 − 0.25k)c.

Infer a phase diagram with nullclines and divide the phase diagram into appropriate regions.

Important properties about the solutions are obtained by partitioning the phase plane into

regions where we know the direction of increase or decrease of each variable. In particular,

the partition will often indicate whether or not a certain equilibrium point is stable, in the

sense that paths starting near the equilibrium point tend to that point as t→ ∞.

The Lyapunov theorem (Theorem 1.3.7) now provides us with a tool to analyze local

stability for a nonlinear system of equations. The intuition behind this theorem is again

Hartman-Grobman which can be applied to systems where A has eigenvalues with their real

parts different from zero. If we impose stronger conditions, one may be able to prove global

stability using Olech’s Theorem (Sydsæter et al. 2005, Theorems 6.8.1 and 6.8.2).

Theorem 1.3.7 (Lyapunov) Suppose that f and g are C1 functions (all partial derivatives

up to k = 1 exist and are continuous) and let (a, b) be an equilibrium point for the system,

ẋ = f(x, y), ẏ = g(x, y).

Let A be the Jacobian matrix,

A =

(

fx(a, b) fy(a, b)

gx(a, b) gy(a, b)

)

.

If tr(A) = fx(a, b) + gy(a, b) < 0, and det(A) = fx(a, b)gy(a, b) − fy(a, b)gx(a, b) > 0, or if

both eigenvalues of A have negative real parts, then (a, b) is locally asymptotic stable.

Theorem 1.3.8 (Olech) Consider a system, where f and g are C1 functions in R2,

ẋ = f(x, y), ẏ = g(x, y),
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and let (a, b) be an equilibrium point. Let A be the Jacobian matrix,

A(x, y) =

(

fx(x, y) fy(x, y)

gx(x, y) gy(x, y)

)

.

Assume that the following three conditions are all satisfied:

(a) tr(A(x, y)) = fx(x, y) + gy(x, y) < 0 in all of R
2,

(b) det(A(x, y)) = fx(x, y)gy(x, y) − fy(x, y)gx(x, y) > 0 in all of R
2,

(c) fx(x, y)gy(x, y) 6= 0 in all of R
2 or fy(x, y)gx(x, y) 6= 0 in all of R

2.

Then (a, b) is globally asymptotic stable.

1.4 Calculus of variation

Literature: Kamien and Schwartz (1991, part 1), Sydsæter et al. (2005, chap. 8)

The calculus of variation has a long history (Euler, Lagrange in the 18th century). In

economics, some first applications were by Ramsey (1928) to an optimal savings problem,

and by Hotelling (1931) to a problem of how to extract a natural resource.

1.4.1 Euler equation

The simplest problem in the calculus of variation takes the form

max

∫ t1

t0

F (t, x, ẋ)dt subject to x(t0) = x0, x(t1) = x1. (1.46)

Here, F is a given well behaved function of three variables, whereas t0 and t1, as well as x0

and x1 are given numbers. Among all well behaved functions x(t) that satisfy x(t0) = x0

and x(t1) = x1, find one making the integral (1.46) as large as possible.

Already in 1744, Euler proved that a function x(t) can only solve problem (1.46), if x(t)

satisfies the differential equation,

∂F

∂x
− d

dt

(
∂F

∂ẋ

)

= 0, (1.47)

called the Euler equation. Replacing F with −F does not change the condition. Hence, the

equation is a necessary condition also for solving the corresponding minimization problem.

Note that the term (d/dt)(∂F (t, x, ẋ)/∂x) denotes the total derivative of ∂F (t, x, ẋ) with
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respect to t. According to the chain rule,

d

dt

(
∂F

∂ẋ

)

=
∂2F (t, x, ẋ)

∂t∂ẋ
+
∂2F (t, x, ẋ)

∂x∂ẋ
ẋ+

∂2F (t, x, ẋ)

(∂ẋ)2
ẍ.

Inserting this into the Euler equation (1.47) and rearranging yields

∂2F (t, x, ẋ)

∂t∂ẋ
+
∂2F (t, x, ẋ)

∂x∂ẋ
ẋ+

∂2F (t, x, ẋ)

(∂ẋ)2
ẍ− ∂F

∂x
= 0

⇔ Fẋẋẍ + Fxẋẋ+ Ftẋ − Fx = 0,

where Fẋẋ = ∂2F (t, x, ẋ)/(∂ẋ)2, Fxẋ = ∂2F (t, x, ẋ)/(∂x∂ẋ), Ftẋ = ∂2F (t, x, ẋ)/(∂t∂ẋ), and

Fx = ∂F/(∂x). Thus, for Fẋẋ 6= 0, the Euler equation is a differential equation of second or-

der, typically does not have an explicit solution. It gives a necessary condition for optimality,

but in general is not sufficient. By analogy with static optimization problems, if F (t, x, ẋ)

is concave (convex) in (x, ẋ), an admissible solution that satisfies the Euler equation solves

the maximization (minimization) problem and ensures optimality.

The first known application of the calculus of variation was the brachistochrone problem

(brachistos - shortest, chronos - time). Given two points A and B in a vertical plane,

the time required for a particle to slide along a curve under the sole influence of gravity

will depend on the shape of the curve. Along which curve does the particle go from A to

B as quick as possible? The following formulation is from Padra 2006, The Beginnings of

variational calculus, and its early relation with numerical methods, Variational Formulations

in Mechanics: Theory and Applications.

Example 1.4.1 (Brachistochrome) Consider the following variational problem where a

particle slides from x0 to x1 under the sole influence of gravity (at gravitational constant g).

I(x) = min

∫ t1

t0

√

1 + ẋ2

2gx
dt s.t. x(t0) = x0, x(t1) = x1.

What is the curve traced out by a particle that reaches x1 in the shortest time? Observe that

∂F

∂x
= −1

2

√

1 + ẋ2

2gx3
,

∂F

∂ẋ
=

ẋ
√

(1 + ẋ2)2gx
,

∂2F

∂t∂ẋ
= 0,

∂2F

∂x∂ẋ
= −1

2

ẋ
√

(1 + ẋ2)2gx3
,

∂2F

(∂ẋ)2
=

√

(1 + ẋ2) − ẋ2(1 + ẋ2)−1/2

(1 + ẋ2)
√

2gx
.
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Using the Euler equation (1.47), a necessary condition is

√

(1 + ẋ2) − ẋ2(1 + ẋ2)−1/2

(1 + ẋ2)
√

2gx
ẍ− 1

2

ẋ
√

(1 + ẋ2)2gx3
ẋ +

1

2

√
1 + ẋ2

√

2gx3
= 0

⇔
√

(1 + ẋ2) − ẋ2(1 + ẋ2)−1/2

(1 + ẋ2)
ẍ +

1

2

1
√

(1 + ẋ2)x
= 0

⇔ 1 − ẋ2(1 + ẋ2)−1

√

(1 + ẋ2)
ẍ +

1

2

1
√

(1 + ẋ2)x
= 0

⇔ ẍx +
1

2
(1 + ẋ2) = 0.

Any curve that follows the Euler equation is a solution candidate. With two conditions we

force the solution to go between exactly through points (t0, x0) and (t1, x1). After some steps,

the solution turns out to be a cycloid equation.

Obtaining the Euler equation

The Euler equation plays a similar role in the calculus of variation as the familiar first-order

condition in static optimization. Its derivation is very instructive and provides some insights

into dynamic optimization. To this end, consider the variational problem (1.46) assuming

that admissible functions are C2. Suppose that x∗ = x∗(t) is an optimal solution to the

problem and let h(t) be any C2 function that satisfies the boundary conditions h(t0) = 0,

h(t1) = 0. For each real number a ∈ R, define a perturbed function y(t) = x∗(t) + ah(t).

Clearly, y(t) is admissible because it is C2, and satisfies y(t0) = x0 and y(t1) = x1.

Let J(x) ≡
∫ t1

t0
F (t, x, ẋ)dt be the objective function. Because of the hypothesis that x∗(t)

is optimal, J(x∗) ≥ J(x∗ + ah(t)) for all a ∈ R. If the function h(t) is kept fixed, then

J(x∗ + ah(t)) is a function g(a) of only the single scalar a, given by

g(a) =

∫ t1

t0

F (t, y(t), ẏ(t))dt =

∫ t1

t0

F (t, x∗(t) + ah(t), ẋ∗(t) + aḣ(t))dt.

Obviously, g(0) = J(x∗) and g(a) ≤ g(0) for all a ∈ R. Hence the function g has a maximum

at a = 0, and d(g(0))/da = 0. This condition allows us to deduce the Euler equation.

Observe that to calculate g′(a) requires differentiating under the integral sign. We apply

Leibnitz’s formula (1.15) to obtain

g′(a) =

∫ t1

t0

∂

∂a
F (t, x∗(t) + ah(t), ẋ∗(t) + aḣ(t))dt.
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According to the chain rule,

∂

∂a
F (t, x∗(t) + ah(t), ẋ∗(t) + aḣ(t)) = Fyh(t) + Fẏḣ(t),

where Fy and Fẏ are both evaluated at (t, x∗ + ah(t), ẋ∗ + aḣ(t)). For a = 0, we obtain

g′(0) =

∫ t1

t0

[

Fxh(t) + Fẋḣ(t)
]

dt.

To proceed, integrate the second term of the integrand by parts (1.10) to get

∫ t1

t0

Fẋḣ(t)dt =

∣
∣
∣
∣

t1

t0

Fẋh(t) −
∫ t1

t0

d

dt
Fẋh(t)dt (1.48)

= −
∫ t1

t0

d

dt
Fẋh(t)dt,

where we used h(t0) = h(t1) = 0 for the last equality. Hence the foc g′(0) = 0 reduces to

g′(0) =

∫ t1

t0

[

Fx −
d

dt
Fẋ

]

h(t)dt = 0.

Because this equation must be valid for all functions h(t) that are C2 on [t0, t1] and that are

zero at t0 and t1, it follows that

Fx −
d

dt
Fẋ = 0,

which is a necessary condition for a maximum (minimum) for the variational problem (1.46).

Note that if dFẋ/dt = 0, we have the familiar first-order condition Fx = 0. Alternatively,

integrating over t the Euler equation can be written as

∣
∣
∣
∣

t1

t0

Fẋ(t, x
∗, ẋ∗) =

∫ t1

t0

Fx(t, x
∗, ẋ∗)dt.

Optimal savings

The question Ramsey (1928) has addressed is how much investment would be desirable.

High consumption today is in itself preferable, but leads to a low rate of investment which

in turn results in a lower capital stock in the future, thus reducing the possibilities for future

consumption. One must somehow find a way to reconcile the conflict between present and

future consumption. To this end, consider the following example.

Example 1.4.2 (Ramsey problem) Consider an economy where Kt ≡ K(t) denotes the
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capital stock, Ct ≡ C(t) consumption, and Yt ≡ Y (t) aggregate output. Suppose that output

Yt = f(Kt) = Ct + K̇t, f ′(Kt) > 0, f ′′(Kt) < 0,

is a strictly increasing, concave function of the capital stock, divided between consumption

Ct and investment It = K̇t. Let K0 be a historically given capital stock, and suppose there

is a fixed planning period [0, T ]. For each choice of investment, capital is fully determined

by Kt = K0 +
∫ T

0
Ksds which in turn determines Ct. Assume that the society has a utility

function U = U(Ct). Suppose that U ′(Ct) > 0, and U ′′(Ct) < 0, U is strictly increasing

and strictly concave. Further we introduce a measure of impatience, discounting U by the

discount factor e−rt. The variational problem then reads

max

∫ T

0

e−rtU(f(Kt) − K̇t)dt s.t. K(0) = K0, K(T ) = KT ,

where some terminal condition K(T ) is imposed.

Example 1.4.3 (Optimal saving) Suppose that an individual instantaneous utility is u(ct)

where u′(ct) > 0, and u′′(ct) < 0. The household maximizes discounted utility,

max

∫ t1

t0

e−ρtu(ct)dt s.t. rat + wt = ct + ȧt, a(t0) = a0, a(t1) = a1,

ρ > 0 is the subjective rate of time preference, at denotes individual wealth rewarded at the

constant interest rate r, and the constant labor supply rewarded at exogenous wage rate wt.

Note that at can also be negative (then the household borrows at the interest rate r).

Substituting the budget constraint into the objective function gives

max

∫ t1

t0

e−ρtu(rat + wt − ȧt)dt, a(t0) = a0, a(t1) = a1.

To use the Euler equation, we use partial derivatives, Fa = e−ρtu′(ct)r, and Fȧ = −e−ρtu′(ct).

Hence we obtain from (1.47),

Fa = dFȧ/dt ⇔ e−ρtu′(ct)r = d(−e−ρtu′(ct))/dt

= ρe−ρtu′(ct) − e−ρtu′′(ct)ċt

⇔ r − ρ = −u
′′(ct)

u′(ct)
ċt, where − u′′(ct)

u′(ct)
> 0.

Note that u′′(c)/u′(c) can be interpreted as the instantaneous growth rate of u′(c). Because

F (t, a, ȧ) is concave, the Euler equation is a sufficient condition for optimality.
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Special cases

Euler equations in general are difficult to solve. There are important special cases, however,

where the problem reduces substantially.

1. objective function (the integrand) does not depend on x explicitly, that is F (t, ẋ)

2. the integrand does not depend on t explicitly, that is F (x, ẋ)

In both cases, the problem reduces to solving a first-order differential equation which, in

general, is easier to handle than the usual second-order Euler equation.

Exercise 1.4.4 Characterize the possible solutions to the variational problem

max

∫ T

1

(3ẋ− tẋ2)dt s.t. x(1) = x1, x(T ) = xT .

Exercise 1.4.5 Characterize the possible solutions to the variational problem

min

∫ T

0

x
√

1 + ẋ2dt s.t. x(0) = x0, x(T ) = xT .

1.4.2 More general terminal conditions

So far, boundary values of the unknown function have been fixed. In economic applications

the initial point is usually fixed because it represents a historically given situation. However,

the terminal value can be free, or subject to more general restrictions. In what follows we

review two most common terminal conditions that appear in economic models.

The two problems can be formulated as

max

∫ t1

t0

F (t, x, ẋ)dt s.t. x(t0) = x0, x(t1) free, (1.49)

and

max

∫ t1

t0

F (t, x, ẋ)dt s.t. x(t0) = x0, x(t1) ≥ x1. (1.50)

Again, F is a given well behaved function of three variables, whereas t0 and t1, as well as x0

are given numbers. Among all well behaved functions x(t) that satisfy x(t0) = x0 and x(t1)

satisfying either terminal condition, find one making the integral (1.46) as large as possible.

An important observation is that an optimal solution to either of the two problems must

satisfy the Euler equation. Suppose x∗ solves either problem. The condition x∗(t0) = x0

places one restriction on the constants in the general solution of the Euler equation. A
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so called transversality condition is needed to determine the other constant. The relevant

condition is given in the following theorem (Sydsæter et al. 2005, Theorem 8.5.1).

Theorem 1.4.6 (Transversality conditions) If x∗(t) solves the variational problem with

either (1.49) or (1.50) as the terminal condition then x∗(t) must satisfy the Euler equation

(1.47). For x(t1) free the transversality condition is

(Fẋ)t=t1
= 0.

With the terminal condition x(t1) ≥ 0, the transversality condition is

(Fẋ)t=t1
≤ 0, (Fẋ)t=t1

= 0 if x∗(t1) > x1.

If F (t, x, ẋ) is concave in (x, ẋ), then any admissible x∗(t) satisfying both the Euler equation

and the appropriate transversality condition will solve the problem (1.49) or (1.50).

Obtaining the transversality condition

Recall that an optimality condition for deriving the Euler equation from (1.48) was

∫ t1

t0

Fẋḣ(t)dt =

∣
∣
∣
∣

t1

t0

Fẋh(t) −
∫ t1

t0

d

dt
Fẋh(t)dt.

The first term of the right-hand side vanishes only if we demand that h(t1) = 0. However,

we now allow for solutions where
∣
∣
t1

t0
Fẋh 6= 0, because h(t1) 6= 0. Hence, we obtain

∫ t1

t0

Fẋḣ(t)dt = Fẋh(t1) −
∫ t1

t0

d

dt
Fẋh(t)dt.

As a result, the first-order condition becomes

g′(0) =

∫ t1

t0

[

Fx −
d

dt
Fẋ

]

h(t)dt + Fẋh(t1) = 0,

which must be valid for all functions h(t) that are C2 on [t0, t1]. In that the Euler equation

has to be augmented by the transversality condition Fẋ(t1, x, ẋ) = 0. Intuitively, a change

in the variable ẋ at the time t1 should not lead to an increase in the objective function.

Exercise 1.4.7 (Atkinson’s pensioner) Let a(t) denote a pensioner’s wealth at time t,

and let w be the (constant) pension income. Suppose that the person can borrow and save at

the same constant interest rate r. Consumption at time t is ct = rat + w − ȧt. Suppose the
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pensioner plans consumption from t = 0 until terminal date T such as to maximize

max

∫ T

0

e−ρtu(ct)dt s.t. a(0) = a0, a(T ) ≥ aT ,

where u is a utility function with u′ > 0, u′′ < 0, and ρ is a discount rate (see Atkinson 1971).

Characterize the possible solutions.

Other extensions such as problems with variable final time, infinite horizon, or several

unknown functions will be dealt using the more general control theory.

1.5 Control theory

Literature: Kamien and Schwartz (1991, part 2), Sydsæter et al. (2005, chap. 9,10)

Optimal control theory often is able to solve complicated structured problems. It is a modern

extension of the classical calculus of variation and goes back to Pontryagin et al. (1962).

1.5.1 Maximum principle

Consider a system whose state at time t is characterized by a number x(t), the state variable.

The process that controls x(t) at least partially is called a control function u(t). In what

follows, we assume that the rate of change of x(t) depends on t, x(t), and u(t). The state at

some initial point t0 is typically known, x(t0) = x0. Hence, the basic problem reads,

max

∫ t1

t0

f(t, x(t), u(t))dt s.t. ẋ = g(t, x(t), u(t)), x(t0) = x0. (1.51)

Note that the variational problem is given for ẋ = g(t, x(t), u(t)) = u(t). By choosing

different control functions u(t), the system can be steered along many different paths, not all

of which are equally desirable. As usual we therefore define an objective function, which is

the integral J =
∫ t1

t0
f(t, x(t), u(t))dt. Certain restrictions are often placed on the final state

x(t1). Moreover, the time t1 at which the process stops is not necessarily fixed. Among all

admissible pairs (x(t), u(t)) that obey the differential equation in (1.51) with x(t0) = x0 and

that satisfy the constraints imposed on x(t1), find one that maximizes the objective function

in (1.51), i.e. find the optimal pair.

We introduce a function λ = λ(t) associated with the constraint (or transition equation)

for each t in [t0, t1]. We refer to this function as the adjoint function (or costate variable)

associated with the differential equation. Corresponding to the Lagrangian function is the
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Hamiltonian H. For each time t in [t0, t1] and each possible triple (x, u, λ), of the state,

control, and adjoint variables, the Hamiltonian is defined by

H(t, x, u, λ) = f(t, x, u) + λ(t)g(t, x, u). (1.52)

The maximum principle gives necessary conditions for optimality, similar to the Euler

equation (including all necessary conditions emerging from the classical theory), for a wide

range of dynamic optimization problems. Suppose that (x∗(t), u∗(t)) is an optimal pair for

the problem (1.51). Then there exists a continuous function and piecewise differentiable

function λ(t) such that, for all t in [t0, t1] (Sydsæter et al. 2005, Theorem 9.2.1),

u = u∗(t) maximizes H(t, x∗(t), u, λ(t)) for u ∈ (−∞,∞), (1.53)

λ̇(t) = −Hx(t, x
∗(t), u∗(t), λ(t)), λ(t1) = 0. (1.54)

The requirement that λ(t1) = 0 is called transversality condition. It tells us that in the case

where x(t1) is free, the adjoint variable vanishes at t1. If the requirement

H(t, x, u, λ(t)) is concave in (x, u) for each t ∈ [t0, t1]

is added we obtain sufficient conditions (Sydsæter et al. 2005, Theorem 9.2.2). In a way,

changing u(t) on a small interval causes f(t, x, u) to change immediately. Moreover, at the

end of this interval x(t) has changed and this change is transmitted throughout the remaining

time interval. In order to steer the process optimally, the choice of u(t) at each instant of

time must anticipate the future changes in x(t). In short, we have to plan ahead or have

to be forward looking. In a certain sense, the adjoint equation takes care of this need for

forward planning, λ(t0) =
∫ t1

t0
Hx(s, x

∗(s), u∗(s), λ(s))ds.

Since the control region is (−∞,∞), a necessary condition for (1.53) is that

Hu(t, x
∗(t), u∗(t), λ(t)) = 0.

If H(t, x(t), u, λ(t)) is concave in u, it is also sufficient for the maximum condition (1.53) to

hold, because an interior stationary point for a concave function is (globally) optimal.

To summarize, necessary conditions for an optimal solution to the control problem (1.51)
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are obtained defining the Hamiltonian H(t, x, u, λ) = f(t, x, u)+λ(t)g(t, x, u) which requires

Hu = 0, (1.55)

Hx = −λ̇, (1.56)

Hλ = ẋ. (1.57)

For a maximum, the necessary conditions are sufficient for optimality if f and g are concave

in (x, u), respectively and λ(t) ≥ 0. Similarly for a minimum, if f is concave, g is convex in

(x, u) and λ ≤ 0, the necessary conditions are sufficient.

Example 1.5.1 Consider the variational problem

max

∫ t1

t0

f(t, x, ẋ)dt s.t. x(0) = x0.

Using u = ẋ, it becomes a control problem. The Hamiltonian is H = f(t, x, u) + λu, and

Hu = fu + λ = 0, Hx = fx = −λ̇,

are the first-order conditions. Hence, fu = fẋ and therefore fẋ = −λ. As a result,

fx = −λ̇ = − d

dt
λ =

d

dt
fẋ,

which is the Euler equation of the variational problem. Moreover, 0 = λ(t1) = −fẋ is the

transversality condition. Assuming that f is a C2 function, if the Hamiltonian attains its

maximum at u∗(t), not only is Hu = 0, but also Huu ≤ 0, implying that fẋẋ ≤ 0 which is the

Legendre condition in the calculus of variation.

Obtaining the maximum principle

Consider the control problem (1.51) assuming that admissible functions are C2. Because the

constraint is a differential equation on the interval [t0, t1], it can be regarded as an infinite

number of equality constraints, one for each time t. Economists usually incorporate equality

constraints by forming a Lagrangian function, with a Lagrange multiplier corresponding to

each constraint. Thus, the problem can be written as

max

∫ t1

t0

(
f(t, x(t), u(t)) − λ(t) [ẋ− g(t, x(t), u(t))]

)
dt s.t. x(t0) = x0.
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Observing that integration by parts (1.12) gives,

∫ t1

t0

λ(t)ẋ(t)dt = λ(t1)x(t1) − λ(t0)x(t0) −
∫ t1

t0

λ̇(t)x(t)dt,

we obtain

max

∫ t1

t0

(

f(t, x, u) + λg(t, x, u) + λ̇x
)

dt + λ(t0)x(t0) − λ(t1)x(t1) s.t. x(t0) = x0.

Suppose that u∗ = u∗(t) is an optimal control, and let h(t) be any C2 function. For each real

number a ∈ R, let y(t) ≡ u∗(t)+ah(t) be an admissible control and x(t, a) be the admissible

state variable that satisfies the constraint ẋ = g(t, x, y) and initial condition, x(t0) = x0.

Note that for any given control, u(t), ẋ = g(t, x, u) is a first-order differential equation which

solution depends on an arbitrary constant. This constant is given by the initial condition

x(t0) = x0, which in general forces a unique solution x(t, a) for a given control y(t). Keeping

u∗ and h fixed, we solve our problem by maximizing J(a) with respect to a,

J(a) =

∫ t1

t0

(

f(t, x(t, a), u∗(t) + ah(t)) + λ(t)g(t, x(t, a), u∗(t) + ah(t)) + λ̇x(t, a)

)

dt

+λ(t0)x(t0, a) − λ(t1)x(t1, a).

The initial condition is given by λ(t0)x(t0, a) = λ(t0)x0 ∀a. The first-order condition reads

J ′(a) =

∫ t1

t0

(

(fx + λ(t)gx + λ̇)xa + (fu + λ(t)gu)h(t)

)

dt− λ(t1)xa(t1, 0) = 0.

Observe that the condition is satisfied if

(a) λ(t) solves the first-order differential equation

λ̇+ λ(t)gx + fx = 0

with terminal condition is λ(t1) = 0,

(b) and fu + λgu = 0.

Of course, by construction the constraint ẋ = g(t, x, u) must hold. Finally, defining the

Hamiltonian H(t, x, u, λ) = f(t, x, u) + λ(t)g(t, x, u) gives the necessary conditions of the

maximum principle (1.55) to (1.57), together with conditions x(t0) = x0 and λ(t1) = 0. For

a maximum (minimum) we have that Huu ≤ 0 (Huu ≥ 0).
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1.5.2 Regularity conditions

In many applications of control theory to economics, the control function are explicitly or

implicitly restricted in various ways. In general, assume that u(t) takes values in a fixed

subset U of the reals, called control region. An important aspect of control theory is that

u(t) can take values at the boundary of U . One example are bang-bang controls

u(t) =

{

1 for t ∈ [t0, t
′]

0 for t ∈ (t′, t1]
,

which involve a single shift at time t′. In this case u(t) is piecewise continuous, with a jump

discontinuity at t = t′. A function is piecewise continuous if it has at most a finite number of

discontinuities on each finite interval, with finite jumps at each point of discontinuity. The

value of a control u(t) at a point of discontinuity will not be of any importance, but let us

agree to choose the value of u(t) at a point of discontinuity t as the left-hand limit of u(t)

at t′. Then u(t) will be left-continuous which will be implicitly assumed.

A solution to a control problem where u = u(t) has discontinuities is a continuous function

that has a derivative that satisfies the equation, except at points where u(t) is discontinuous.

The graph of x(t) will, in general, have kinks at the points of discontinuity of u(t), and will

usually not be differentiable at these kinks. It is, however, still continuous at the kinks.

So far no restrictions have been placed on the functions g(t, x, u) and f(t, x, u). In general,

we implicitly assume that both functions are of class C1, that is f , g, and their first-order

partial derivatives with respect to x and u are continuous in (t, x, u).

1.5.3 Standard end constraint problems

The standard end constrained problem imposes one of the following terminal conditions,

(a) x(t1) = x1, (b) x(t1) ≥ x1, (c) x(t1) free.

It can be shown that the necessary conditions for optimality are the same as for the basic

control problem, but the transversality condition is either

(a′) λ(t1) free (b′) λ(t1) ≥ 0, (with λ(t1) = 0 if x∗(t1) > x1) (c′) λ(t1) = 0. (1.58)

Exercise 1.5.2 (Optimal consumption) Solve the following control problem

∫ T

0

u(ct)dt s.t. ȧt = rat − ct, a(0) = a0, a(T ) ≥ 0,
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where r denotes the constant rental rate of capital. Suppose that u′ > 0, u′′ < 0 is strictly

concave and assume that c(t) > 0 so that the control region is (0,∞).

Exercise 1.5.3 (Bang-bang) Solve the following control problem

max

∫ 1

0

(2x− x2)dt, s.t. ẋ = u, x(0) = 0, x(1) = 0,

for the control region u ∈ [−1, 1].

1.5.4 Variable final time

In the optimal control problems studied so far the time interval has been fixed. Yet for some

control problems in economics, the final time is a variable to be chosen optimally, along the

path u(t), t ∈ [t0, t1]. A variable final time problem is for example

max
{u,t1}

∫ t1

t0

f(t, x(t), u(t))dt s.t. ẋ = g(t, x(t), u(t)), x(t0) = x0. (1.59)

The maximum principle with variable final time then states that all necessary conditions

hold, and, in addition (Sydsæter et al. 2005, Theorem 9.8.1)

H(t∗1, x
∗(t1), u

∗(t), λ(t∗1)) = 0.

Basically, one additional unknown is determined by one extra condition. Hence, the method

for solving variable final time problems is first to solve the problem with fixed t1 for every

t1 > t0. The optimal final time t∗1 must then satisfy the additional restriction. Note that

concavity of the Hamiltonian in (x, u) is not sufficient for optimality when t1 is free.

Exercise 1.5.4 (Hotelling’s rule) Consider x(t) as the amount of an exhaustible resource

in a reservoir at time t, where x(0) = x0. Let u(t) denote the rate of extraction such that

x(t) = x0−
∫ t

0
u(s)ds. Suppose the price of the resource at time t is q(t), and the sales revenue

per unit of time at t is q(t)u(t). Assume further that the cost of extraction is C = C(t, x, u),

thus the instantaneous rate of profit at time t is

π(t, x, u) = q(t)u(t) − C(t, x, u).

Let the discount rate be r, so that the control problem reads

max

∫ T

0

e−rtπ(t, x, u)dt, s.t. ẋ = −u(t), x(0) = x0.
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It is natural to assume that u(t) ≥ 0, and that x(T ) ≥ 0. Consider the following problems.

(a) Characterize the optimal rate of extraction u∗ = u∗(t) which solves the control problem

over a fixed extraction period [0, T ]. If necessary, impose further restrictions on C.

(b) Find the optimal stopping time T that solves the control problem for C = C(t, u).

This example builds on Hotelling (1931).

1.5.5 Current value formulations

Many control problems in economics have the following structure

max

∫ t1

t0

e−(t−t0)rf(t, x(t), u(t))dt s.t. ẋ = g(t, x(t), u(t)), x(t0) = x0. (1.60)

The new feature is the explicit appearance of the discount factor e−(t−t0)r. For such problems

it is often convenient to formulate the maximum principle in a slightly different form. The

usual Hamiltonian is H = e−(t−t0)rf(t, x, u)+λ(t)g(t, x, u). Multiply by e(t−t0)r to obtain the

current value Hamiltonian, Hc = He(t−t0)r = f(t, x, u) + e(t−t0)rλ(t)g(t, x, u). Introducing

m(t) = e(t−t0)rλ(t) as the current value (not discounted) shadow price for the problem,

Hc(t, x, u,m) = f(t, x, u) +m(t)g(t, x, u).

In fact, the maximum principle comprises (Sydsæter et al. 2005, Theorem 9.9.1)

u = u∗(t) maximizes Hc(t, x∗(t), u,m(t)) for u ∈ U,

ṁ(t) = rm(t) −Hc
x,

with transversality conditions

(a′) m(t1) free (b′) m(t1) ≥ 0 (with m(t1) = 0 if x∗(t1) > x1) (c′) m(t1) = 0, (1.61)

similar to the standard end constrained as in (1.58).

Exercise 1.5.5 Solve the following control problem

max

∫ 20

0

e−0.25t(4K − u2)dt s.t. K̇ = −0.25K + u, K(0) = K0, K(20) free,

where u ≥ 0 denotes the repair effort and K(t) the value of a machine, 4K − u2 is the

instantaneous net profit at time t, and e−0.25t is the discount factor.

39



1.5.6 Infinite horizon

Most of the optimal growth models appearing in literature have an infinite time horizon.

This assumption often does simplify formulas and conclusions, though at the expense of

some new mathematical problems that need to be sorted out. A typical infinite horizon

optimal control problem takes the form

max

∫ ∞

t0

e−(t−t0)rf(t, x(t), u(t))dt s.t. ẋ = g(t, x(t), u(t)), x(t0) = x0. (1.62)

Often no condition is placed on x(t) as t→ ∞, but many problems do impose the constraint

lim
t→∞

x(t) ≥ x1, x1 ∈ R.

Because of the presence of the discount factor, it is convenient to use the current value

formulation with the current value Hamiltonian,

Hc(t, x, u,m) = f(t, x, u) +m(t)g(t, x, u),

and m(t) as the current value shadow price. From the maximum principle, it can be shown

that sufficient conditions are as follows (Sydsæter et al. 2005, Theorem 9.11.1)

(a) u = u∗(t) maximizes Hc(t, x∗(t), u,m(t)) for u ∈ U,

(b) ṁ(t) = rm(t) −Hc
x,

(c) Hc(t, x, u,m(t)) is concave with respect to (x, u),

(d) lim
t→∞

m(t)e−rt[x(t) − x∗(t)] ≥ 0 for all admissible x(t).

Other necessary conditions where a certain growth condition replaces the transversality

condition are in Sydsæter et al. (2005, Theorem 9.11.2).

Remark 1.5.6 (Malinvaud) Note that the inequality (d) must be shown for all admissible

x(t), which often is problematic. The following conditions are equivalent to (d) for the case

where the terminal condition is limt→∞ x(t) ≥ x1 (Michel 1982, Sydsæter et al. 2005),

(A) lim
t→∞

m(t)e−rt[x1 − x∗(t)] ≥ 0,

(B) there is a number M such that |m(t)e−rt| ≤M for all t ≥ t0,

(C) there is a number s such that m(t) ≥ 0 for all t ≥ s.

Suppose that x(t) ≥ x1 for all t. Then it suffices to check conditions (A) and (C). This result
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is referred to as the Malinvaud transversality condition.

Exercise 1.5.7 (Infinite horizon) Consider the control problem

max

∫ ∞

0

−u2e−rtdt s.t. ẋ = ue−at, x(0) = 0, lim
t→∞

x(t) ≥ K, u ∈ R.

The constants r, a, and K are positive, with a > r/2. Find the optimal solution.

1.5.7 Several control and state variables

As we show below, most of the results obtained by studying control problems with only

one state and one control variable can be generalized to control problems with an arbitrary

number of state and control variables.

The standard problem is to find for fixed values of t0 and t1 a pair of vector functions

(x(t), u(t)) = ((x1(t), ..., xn(t))>, (u1(t), ..., ur(t))
>) on [t0, t1], which maximizes the objective

function

max

∫ t1

t0

f(t, x(t), u(t)) s.t. ẋ = g(t, x(t), u(t)), xi(t0) = x0
i , i = 1, ..., n,

where ẋ = g(t, x(t), u(t)) = (g1(t, x(t), u(t)), ..., gn(t, x(t), u(t)))
>, satisfying initial conditions

x0 = (x0
1, ..., x

0
n)> ∈ Rn, the terminal conditions

(a) xi(t1) = x1
i , i = 1, ..., l

(b) xi(t1) ≥ x1
i , i = l + 1, ..., m

(c) xi(t1) free, i = m + 1, ..., n

(1.63)

and the control region, u(t) = (u1(t), ..., ur(t))
> ∈ U ⊆ Rr where U is a given set in Rr. Any

pair (x(t), u(t)) is admissible if u1(t), ..., ur(t) are all piecewise continuous, u(t) takes values in

U and x(t) is the corresponding continuous and piecewise differentiable vector function that

satisfies the dynamic constraints as well as initial and terminal conditions. The functions f

and g = (g1, ..., gn)
> are C1 with respect to the n+ r + 1 variables.

The Hamiltonian H(t, x, u, λ), with λ = (λ1, ..., λn)>, is then defined by

H(t, x, u, λ) = f(t, x, u) + λ>g(t, x, u) = f(t, x, u) +
n∑

i=1

λigi(t, x, u).

The maximum principle then reads as follows (Sydsæter et al. 2005, Theorem 10.1.1).

Suppose that (x∗(t), u∗(t)) is an optimal pair for the standard end constrained problem.
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Then there exists a continuous and piecewise differentiable function λ(t) = (λ1(t), ..., λn(t))>

such that for all t in [t0, t1]

u = u∗(t) maximizes H(t, x∗(t), u∗(t)) for u ∈ U, (1.64)

λ̇i = −Hxi
(t, x∗(t), u∗(t), λ(t)), i = 1, ..., n. (1.65)

Corresponding to the terminal conditions (1.63), one has the transversality conditions,

(a) λi(t1) free i = 1, ..., l

(b) λi(t1) ≥ 0 (λi(t1) = 0 if x∗i (t1) > xi
1) i = l + 1, ..., m

(c) λi(t1) = 0 i = m + 1, ..., n

.

For sufficient conditions see e.g. Sydsæter et al. (2005, Theorems 10.1.2 and 10.1.3).

Exercise 1.5.8 (Optimal resource depletion) Consider an economy using an exhaustible

resource, Rt ≡ R(t), as an input factor to produce output,

Yt = Rα
t K

1−α
t , 0 < α < 1, K(0) = K0,

where Kt ≡ K(t) is the aggregate capital stock. Capital is accumulated if net investment is

positive, that is total output exceeds aggregate consumption, Ct ≡ C(t),

It ≡ I(t) = K̇t = Yt − Ct.

Let Xt ≡ X(t) be the amount of the resource in a reservoir at time t, and X(0) = X0. Sup-

pose the planner intends to consume all stocks completely, X(T ) = K(T ) = 0, to maximize

the utility U =
∫ T

0
lnCsds. Find the optimal paths for consumption and resource depletion.

This exercise builds on Dasgupta and Heal (1974).

1.6 Dynamic programming

Literature: Kamien and Schwartz (1991, chap. 2.21), Wälde (2009, chap. 3.3,6)

This chapter gives a brief introduction to continuous-time dynamic programming, showing

how to solve optimization problems using dynamic programming methods. A typical problem

to be tackled by dynamic programming takes the form of a control problem,

max

∫ ∞

t0

e
−
∫ t
t0

ρ(s)ds
f(t, x(t), u(t))dt s.t. ẋ = g(t, x(t), u(t)), x(t0) = x0, (1.66)
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where we are focusing on infinite horizon models throughout the chapter. Suppose that

(x∗(t), u∗(t)) is an optimal pair among the admissible pairs for the problem (1.66).

1.6.1 Bellman’s principle

We define the (optimal) value function at time t0 by

V (t0, x(t0)) =

∫ ∞

t0

e
−
∫ t

t0
ρ(s)ds

f(t, x∗(t), u∗(t))dt. (1.67)

Note that the value function does not depend on the control. The reason is, as it will become

clear below, that the optimal controls u∗(t) will depend on x(t). In the optimum the controls

are a function of the state variables.

Solving the control problem (1.67) using dynamic programming essentially requires a

three-step procedure (Wälde 2009, chap. 6). As a first step, similar to the Euler equation or

the maximum principle, a necessary condition for optimality is

ρ(t0)V (t0, x(t0)) = max
u∈U

{

f(t0, x(t0), u(t0)) +
d

dt
V (t0, x(t0))

}

, (1.68)

to which we refer as the Bellman equation or sometimes called the fundamental equation of

dynamic programming. As a corollary, the first-order condition is

fu(t0, x(t0), u(t0)) +
∂

∂u

(
d

dt
V (t0, x(t0))

)

= 0,

where in both equations using dV (t0, x(t0)) = Vtdt+ Vxdx,

d

dt
V (t0, x(t0)) = Vt + Vxẋ = Vt + g(t0, x(t0), u(t0))Vx.

As the value function does not depend on the control, the first-order condition simplifies to

fu(t0, x(t0), u(t0)) + gu(t0, x(t0), u(t0))Vx = 0. (1.69)

In a second step, we determine the evolution of the costate variable, defined as the law

of motion of the partial derivative of the value function with respect to the state variable.

Using the maximized Bellman equation we obtain

ρ(t0)Vx = fx(t0, x0, u(x(t0))) + Vtx + gx(t0, x(t0), u(t0))Vx + Vxxẋ

⇔ (ρ− gx)Vx = fx + Vtx + Vxxẋ. (1.70)
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Observing that the time-derivative of the costate is

d

dt
Vx(t0, x(t0)) = Vxt + Vxxẋ,

we insert this into (1.70) to obtain

V̇x = (ρ− gx)Vx − fx, (1.71)

which describes the evolution of the costate variable, the shadow price of the state variable.

As the final step we use the time-derivative of the first-order condition (1.69),

fut + fuxẋ+ fuuu̇+ (gut + guxẋ + guuu̇)Vx + V̇xgu = 0,

substituting V̇x by the expression in (1.71), and the costate Vx using the first-order condition

(1.69) to obtain a generalized Euler equation,

fut + fuxẋ+ fuuu̇− (gut + guxẋ + guuu̇)fu/gu − (ρ− gx)fu − fxgu = 0. (1.72)

Example 1.6.1 Using the standard variational problem, u = ẋ, and ρ = 0 it simplifies to

fẋt + fẋxẋ+ fẋẋẍ− fx = 0,

which is the familiar Euler equation in (1.47).

Example 1.6.2 Consider a typical control problem,

max

∫ ∞

0

e−ρtu(c(t))dt s.t. ȧ = ra− c, a(0) = a0,

where ρ, i are positive constants. Suppose the control is u = c, and the state is x = a,

f(t, a(t), c(t)) = f(c(t)) = u(c) ⇒ fc = u′(c), fcc = u′′(c), fa = fct = fca = 0,

g(t, a(t), c(t)) = g(x(t), c(t)) = ra− c ⇒ ga = r, gc = −1, gct = gca = gcc = 0.

Going step-by-step through the suggested procedure or just plugging the partial derivatives in

the generalized Euler equation (1.72) gives the necessary condition, u′′(c)ċ = (ρ− r)u′(c).
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Obtaining the Bellman equation

The heuristic derivation of the Bellman equation is very instructive and provides insights into

dynamic optimization. It shows Bellman’s trick to simplify the multi-dimensional problem

of choosing a complete path of optimal controls, to a one-dimensional problem of choosing

the optimal control in the initial period (Chang 1988, Sennewald and Wälde 2006). Consider

the control problem (1.66) assuming that admissible functions are C1. Suppose further that

an optimal process u∗ = u∗(t) exists. For small h > 0, and ρ(t) ≥ 0 we may write

V (t0, x(t0)) =

∫ t0+h

t0

e
−
∫ t
t0

ρ(s)ds
f(t, x∗(t), u∗(t))dt

+e−
∫ t0+h
t0

ρ(s)ds

∫ ∞

t0+h

e
−
∫ t
t0+h

ρ(s)ds
f(t, x∗(t), u∗(t))dt.

The term
∫∞

t0+h
e
−
∫ t
t0+h

ρ(s)ds
f(t, x∗(t), u∗(t))dt simply denotes the value of the optimal pro-

gram at t = t0 + h. Hence, for any control u(t) with t ≥ t0 + h,

∫ ∞

t0+h

e
−
∫ t

t0+h
ρ(s)ds

f(t, x(t), u(t))dt ≤ V (t0 + h, x(t0 + h)),

with equality for the optimal pair (x∗(t), u∗(t)). Therefore,

0 =

∫ t0+h

t0

e
−
∫ t

t0
ρ(s)ds

f(t, x∗(t), u∗(t))dt+ e−
∫ t0+h

t0
ρ(s)dsV (t0 + h, x(t0 + h)) − V (t0, x(t0)).

Dividing by h and let h→ 0 (from above), the equation becomes

0 = lim
h→0

1

h

∫ t0+h

t0

e
−
∫ t

t0
ρ(s)ds

f(t, x∗(t), u∗(t))dt

+ lim
h→0

1

h

(

e−
∫ t0+h

t0
ρ(s)dsV (t0 + h, x(t0 + h)) − V (t0, x(t0))

)

. (1.73)

The last term is the derivative of e−
∫ t0+h

t0
ρ(s)dsV (t0 + h, x(t0 + h)) with respect to h,

d

dh
e−

∫ t0+h
t0

ρ(s)dsV (t0 + h, x(t0 + h)) = −ρ(t0 + h)e−
∫ t0+h

t0
ρ(s)dsV (t0 + h, x(t0 + h))

+e−
∫ t0+h

t0
ρ(s)ds d

dh
V (t0 + h, x(t0 + h)),

where d
dh
V (t0 + h, x(t0 + h)) for h = 0 is equal to d

dt
V (t0, x(t0)). Similarly, the first term is
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the derivative of
∫ t0+h

t0
e
−
∫ t
t0

ρ(s)ds
f(t, x∗(t), u∗(t))dt with respect to h, which for h = 0 is

d

dh

∫ t0+h

t0

e
−
∫ t
t0

ρ(s)ds
f(t, x∗(t), u∗(t))dt = e−

∫ t0+h
t0

ρ(s)dsf(t0 + h, x∗(t0 + h), u∗(t0 + h))

= f(t0, x
∗(t0), u

∗(t0)).

Therefore, we may rewrite (1.73) as

ρ(t0)V (t0, x(t0)) = f(t0, x
∗(t0), u

∗(t0)) +
d

dt
V (t0, x(t0)),

which is the maximized Bellman equation (1.68).

Obtaining the Bellman equation II

The second heuristic derivation is an application of the Leibnitz formula (1.15) which sheds

light on the economic content of the Bellman equation (as taken from Wälde 2009, chap. 6).

Given the control problem in (1.66), we may define a criterion function,

U(t, x(t), u(t)) =

∫ ∞

t

e−
∫ τ
t

ρ(s)dsf(τ, x(τ), u(τ))dτ,

simply denoting the value of a given program at time t. Its time-derivative reads,

d

dt
U(t, x(t), u(t)) = −e−

∫ t
t

ρ(s)dsf(t, x(t), u(t)) +

∫ ∞

t

∂

∂t

(

e−
∫ τ
t

ρ(s)dsf(τ, x(τ), u(τ))
)

dτ

= −f(t, x(t), u(t)) + ρ(t)U(t, x(t), u(t)).

Observe that

U(t, x(t), u(t)) =
f(t, x(t), u(t)) + U̇(t, x(t), u(t))

ρ(t)

denotes the present value of an perpetuity (periodic payment continuing indefinitely). These

periodic payments consists of the instantaneous payment f(t, x(t), u(t)), say instantaneous

utility, plus the present value of a perpetuity that reflects the change in the periodic payment,

where future payments are discounted at the rate ρ(t). Considering the optimal control u∗(t),

U(t) denotes the value of the optimal program, V (t, x∗(t)). Collecting terms we obtain

ρV (t, x∗(t)) = f(t, x∗(t), u∗(t)) +
d

dt
V (t, x∗(t)),

which corresponds to the Bellman equation (1.68).
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Remark 1.6.3 (Costate variables) From (1.71), the evolution of the costate is

V̇x − (ρ− gx)Vx + fx = 0.

Consider the present value Hamiltonian without explicit discounting (ρ = 0). The shadow

price λ(t) solves

λ̇+ λ(t)gx + fx = 0,

which is the evolution of the costate in the dynamic programming approach where Vx = λ(t).

For the current value Hamiltonian (ρ ≥ 0), the shadow price m(t) solves

ṁ+m(t)gx + fx = ρm(t),

which gives the costate as the current value (not discounted) shadow price Vx = m(t).

Remark 1.6.4 (Infinite horizon) Solving the differential equation

U̇(t, x(t), u(t)) − ρ(t)U(t, x(t), u(t)) = −f(t, x(t), u(t))

requires limT→∞ e−
∫ T
t

ρ(s)dsU(T, x(T ), u(T )) = 0 to obtain the criterion function,

U(t, x(t), u(t)) =

∫ ∞

t

e−
∫ τ

t
ρ(s)dsf(τ, x(τ), u(τ))dτ.

Remark 1.6.5 (Transversality condition) Often the limiting inequality in the dynamic

programming approach is written as (Sennewald 2007, Theorem 4)

lim
t→∞

e−ρtV (t, x(t)) ≥ 0 and lim
t→∞

e−ρtV (t, x∗(t)) = 0, ρ > 0,

for all admissible x(t), which replaces the transversality condition as a sufficient condition.

Remark 1.6.6 (Boundedness condition) By considering infinite horizon problems as in

(1.62) or (1.66), we implicitly assume that the integral

U(t, x(t), u(t)) =

∫ ∞

t

e−
∫ τ
t

ρ(s)dsf(τ, x(τ), u(τ))dτ

converges for all admissible pairs (x(t), u(t)). This assumption has to be checked after having

found an optimal control u∗(t). Typically certain growth restrictions emerge ensuring that

the integral indeed is bounded, to which we refer as the boundedness conditions.

47



1.6.2 The envelope theorem

In order to understand the independence of the Bellman equation to the control variable, it

is instructive to consider the following theorem (Wälde 2009, Theorem 3.2.1).

Theorem 1.6.7 (Envelope theorem) Suppose g(x, u) is a C1 function. Choose u such

that g(x, u) is maximized for a given x, assuming that an interior solution exists. Let f(x)

be the resulting function of x,

f(x) = max
u∈U

g(x, u).

Then, the derivative of f with respect to x equals the partial derivative of g with respect to

x, if g is evaluated at u = u(x) that maximizes g(x, u),

d

dx
f(x) =

∂

∂x
g(x, u)

∣
∣
∣
∣
u=u(x)

.

Proof. Consider the function f(x) = f(x, u(x)). If u = u(x) is a maximum point of g(x, u),

df(x, u(x)) =
∂

∂x
g(x, u)dx

∣
∣
∣
∣
u=u(x)

+
∂

∂u
g(x, u)du

∣
∣
∣
∣
u=u(x)

=
∂

∂x
g(x, u)dx

∣
∣
∣
∣
u=u(x)

,

because gu = 0 at u = u(x) is a necessary condition for a maximium.

Exercise 1.6.8 (Envelope theorem) Let a benevolent planner maximize the social welfare

function U(A,B), where A and B are consumption goods. The technologies are A = A(cLA),

B = B(LB), and the economy’s resource constraint is LA + LB = L. Solve the problem of

the optimal allocation of labor to the sectors,

max
LA

{U(A(cLA), B(1 − LA))} s.t. LB = 1 − LA.

Study the effects of an increase in the technology parameter c on social welfare

(a) without using the envelope theorem,

(b) using the envelope theorem.

Exercise 1.6.9 (Capital adjustment costs) Solve the optimal control problem of a firm

with capital adjustment costs,

max

∫ ∞

0

e−rt (F (Kt) − Φ(It)) dt s.t. K̇t = It − δKt, K(0) = K0.
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Assume the production function to be strictly concave, F ′ > 0 and F ′′ < 0. If the firm

accumulates capital, it faces quadratic adjustment costs of Φ(It) = vIt + I2
t /2, where v > 0.

1.6.3 Several control and state variables

Because using dynamic programming tackles control problems, extensions such as several

control and state variables do not pose new conceptional challenges, however, involve more

cumbersome notation. Let us briefly consider the infinite horizon problem,

max

∫ ∞

t0

e−(t−t0)ρf(t, x(t), u(t))dt s.t. ẋ = g(t, x(t), u(t)), x(t0) = x0, (1.74)

where (x(t), u(t)) = ((x1(t), ..., xn(t))>, (u1(t), ..., ur(t))
>) is a pair of vector functions defined

on [t0,∞), satisfying ẋ = g(t, x(t), u(t)) = (g1(t, x(t), u(t)), ..., gn(t, x(t), u(t)))
>, and initial

conditions x0 = (x0
1, ..., x

0
n) ∈ Rn, and the control region u(t) = (u1(t), ..., ur(t))

> ∈ U ⊆ Rr.

As a first step, the Bellman equation reads

ρV (t0, x(t0)) = max
u∈U

{

f(t0, x(t0), u(t0)) +
d

dt
V (t0, x(t0))

}

, (1.75)

where
d

dt
V (t0, x(t0)) = Vt + Vx1g1 + ... + Vxngn.

Observe that we have r first-order conditions, for i = 1, ..., r

0 =
∂

∂ui
f(t0, x(t0), u(t0)) + Vx1

∂

∂ui
g1 + ...+ Vxn

∂

∂ui
gn.

The second step is to obtain the evolution of n costate variables. For this we use the

maximized Bellman equation, for j = 1, ..., n

ρVxj
= fxj

(t0, x(t0), u(x(t0))) + Vtxj
+ Vx1xj

ẋ1 + ...+ Vxnxj
ẋn + Vx1

∂

∂xj

g1 + ...+ Vxn

∂

∂xj

gn.

Observing that the total derivative of the costate of variable j = 1, ..., n is

d

dt
Vxj

(t0, x(t0)) = Vtxj
+ Vx1xj

ẋ1 + ...+ Vxnxj
ẋn,

we obtain

V̇xj
= ρVxj

− fxj
− Vx1

∂

∂xj
g1 − ...− Vxn

∂

∂xj
gn,

describing the evolution of the costate variable j, the shadow price of the state variable j.

49



As the final step we use the time-derivatives of r first-order conditions, substituting V̇xj

and again the r first-order conditions to substitute costates Vxj
to obtain Euler equations for

the r control variables. Unfortunately, however, it is not always possible to fully eliminate

shadow prices from the resulting equations. Appropriate assumptions on f and g may help.

The general solution to the problem (1.74) is a system of Euler equations.

1.6.4 An example: Lucas’ model of endogenous growth

Consider a closed economy with competitive markets, with identical, rational agents and a

constant returns technology, Y (t) = F (K,N e). At date t there are N workers in total with

skill level h(t). Suppose a worker devotes a fraction u(t) of his non-leisure time to current

production, and the remaining 1 − u(t) to human capital accumulation. Then the effective

workforce (that is effective hours) devoted to production is N e(t) = u(t)h(t)N . Suppose

that preferences over per-capita consumption streams are given by

U ≡
∫ ∞

0

e−ρt c
1−σ

1 − σ
dt, (1.76)

where the subjective discount rate ρ > 0, and σ > 0 (Lucas 1988, Benhabib and Perli 1994).

Production is divided into consumption and capital accumulation. Let k(t) ≡ K(t)/N

denote individual physical capital, where K(t) is the total stock of capital,

K̇ = AF (K,N e) −Nc(t), A ∈ R+. (1.77)

The hourly wage rate per unit of effective labor is w(t), that is the individual’s labor income

at skill h is w(t)h(t)u(t). Further, the rental rate of physical capital is rt. To complete the

model, the effort 1 − u(t) devoted to the accumulation of human capital must be linked to

the rate of change in its level, h(t). Suppose the technology relating the growth of human

capital ḣ to the level already attained and the effort devoted to acquiring more is

ḣ = (1 − u(t))δh(t), δ ∈ R+. (1.78)

According to (1.78), if no effort is devoted to human capital accumulation, u(t) = 1, then

non accumulates. If all effort is devoted to this purpose, u(t) = 0, h(t) grows at rate δ. In

between these extremes, there are no diminishing returns to the stock h(t).

The resource allocation problem faced by the representative individual is to choose a time
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path for c(t) and for u(t) in U ⊆ R+ × [0, 1] such as to maximize life-time utility,

max
{c(t),u(t)}∞t=0

∫ ∞

0

e−ρt c
1−σ

1 − σ
dt s.t. ẋ = g(x(t), c(t), u(t)), x(0) = x0 ∈ R

2
+, (1.79)

where x ≡ (k, h)>,

ẋ ≡
(
AF (K,N e)/N − c(t), (1 − u(t))δh(t)

)>
, (1.80)

and individual income flow at date t is AF (K,N e)/N = r(t)k(t) + w(t)u(t)h(t).

As the first step, the Bellman equation reads

ρV (x(0)) = max
(c(0),u(0))∈U

{
c1−σ

1 − σ
+

d

dt
V (x(0))

}

, (1.81)

where
d

dt
V (x(0)) = (r(t)k(t) + w(t)u(t)h(t) − c(t))Vk + (1 − u(t))δh(t)Vh.

Observe that we have two first-order conditions,

c−σ − Vk = 0, (1.82)

w(t)h(t)Vk − δh(t)Vh = 0. (1.83)

The second step is to obtain the evolution of the costate variables. For this we use the

maximized Bellman equation and the envelope theorem to obtain for physical capital

ρVk = (r(t)k(t) + w(t)u(x)h(t) − c(x))Vkk + r(t)Vk + (1 − u(x))δh(t)Vhk

= k̇Vkk + r(t)Vk + ḣVhk,

and for human capital

ρVh = (r(t)k(t) + w(t)u(x)h(t) − c(x))Vhk + w(t)u(x)Vk + (1 − u(x))δVh

+(1 − u(x))δh(t)Vhh

= k̇Vhk + w(t)u(x)Vk + (1 − u(x))δVh + ḣVhh.

Observing that the costate variables obey

V̇k = k̇Vkk + ḣVkh, and V̇h = k̇Vkh + ḣVhh,
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we may write the evolution of the two costate variables as

V̇k = (ρ− r(t))Vk, V̇h = (ρ− (1 − u(x))δ)Vh − w(t)u(x)Vk.

As the final step we use the first-order conditions (1.82) and (1.83) to substitute costates

Vh and Vk to obtain Euler equations for optimal consumption,

− σc−σ−1ċ = (ρ− r(t))c−σ ⇒ ċ =
r(t) − ρ

σ
c(t), (1.84)

and for the optimal time allocated to production

ẇ(t)Vk + w(t)(ρ− r(t))Vk = (ρ− (1 − u(x))δ)Vhδ − w(t)u(x)Vkδ

⇔ ẇ(t)/w(t) − r(t) = −(1 − u(x))δ − u(x)δ

⇔ u̇/u(t) + ḣ/h(t) = δ/α− c(t)/k(t)

⇒ u̇ =

(
1 − α

α
δ − c(t)/k(t) + u(t)δ

)

u(t). (1.85)

Together with appropriate transversality conditions, initial conditions, and the constraints

in (1.80), the Euler equations describe the equilibrium dynamics.

We may summarize the reduced form system as

k̇ = r(t)k(t) + w(t)u(t)h(t) − c(t),

ḣ = (1 − u(t))δh(t),

ċ = (r(t) − ρ)c(t)/σ,

u̇ =
(

1−α
α
δ − c(t)/k(t)

)
u(t) + u2(t)δ.

and the transversality condition reads (Benhabib and Perli 1994, p.117)

lim
t→∞

[
Vke

−ρt[k(t) − k∗(t)] + Vhe
−ρt[h(t) − h∗(t)]

]
≥ 0,

for all admissible k(t) and h(t).

1.7 Basic concepts of probability theory

Literature: Karlin and Taylor (1975, chap. 1,2), Spanos (1999, chap. 3,4,8), Ljungqvist and

Sargent (2004, chap. 2.1 to 2.3),

This section contains a brief review of the basic elementary notions and terminology of
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probability theory for later reference. The following concepts will be assumed familiar to the

reader. More detailed treatments of these topics can be found in any good standard text for

a course in probability theory (our notation closely follows Spanos 1999).

1.7.1 The notion of a probability model

Definition 1.7.1 (Probability space) The trinity (Ω,F, P ) where Ω is the sample space

(outcomes set), F is an event space associated with Ω, and P is a probability function from

F to the real numbers between 0 and 1 satisfying axioms

1. P (Ω) = 1,

2. P (A) ≥ 0 for any event A ∈ F,

3. for a countable sequence of mutually exclusive events A1, A2, ... ∈ F, countable additivity

P (
⋃∞

i=1Ai) =
∑∞

i=1 P (Ai), holds,

is referred to as a probability space.

Definition 1.7.2 (Random variable) A random variable on the probability space (Ω,F, P )

is a function X : Ω → R that satisfies the restriction X ≤ x := {ω : X(ω) ≤ x} ∈ F for all

x ∈ R. A random variable X is said to be continuous if its range is any uncountable subset

of R. If the subset is countable, the random variable X is said to be discrete.

Definition 1.7.3 (Cumulative distribution function) We refer to

FX : R → [0, 1], FX(x) = P (X ≤ x)

as the cumulative distribution function (cdf) of the random variable X.

Remark 1.7.4 The properties of the cdf FX(x) of the random variable X are

1. FX(x) ≤ FX(y), for x ≤ y, x, y ∈ R,

2. limx↘x0 FX(x) = FX(x0), for any x ∈ R,

3. limx→∞ FX(x) := FX(∞) = 1, limx→−∞ := FX(−∞) = 0,

i.e., FX is a non-decreasing, right-continuous function with FX(∞) = 1, FX(−∞) = 0.
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Definition 1.7.5 (Density function) Assuming that there exists a function of the form

fX : R → [0,∞) such that FX(x) =

∫ x

−∞
fX(u)du, where fX(u) ≥ 0,

fX is said to be a density function of the random variable X which corresponds to FX .

Remark 1.7.6 The density function, for a continuous random variable, satisfies

1. fX(x) ≥ 0 for all x ∈ R,

2.
∫∞
−∞ fX(x)dx = 1,

3. FX(b) − FX(a) =
∫ b

a
fX(x)dx for a < b, a, b ∈ R,

4. P (X = x) = 0 for all x ∈ R.

Definition 1.7.7 (Probability mass function) Assuming that there exist a function

fX : R → [0, 1] such that FX(x) =
∑

u:u≤x

fX(u) where 1 ≥ fX(u) ≥ 0.

fX is said to be a probability mass function of the random variable X corresponding to FX .

Remark 1.7.8 In that the cdf for a discrete random variable is a step function with the

jumps defined by fX . The probability mass function, for a discrete random variable, satisfies

1. fX(x) ≥ 0 for all x ∈ R,

2.
∑

xi∈R
fX(xi) = 1,

3. FX(b) − FX(a) =
∑

a<xi≤b fX(xi) for a < b, a, b ∈ R,

4. P (X = x) = fX(x) for all x ∈ R.

In the literature, the probability mass function is also referred to as the density function for

discrete random variables.

Example 1.7.9 The Normal distribution has the density function

fX(x) =
1√

2σ2π
e−

(x−µ)2

2σ2 , µ ∈ R, σ2 ∈ R+, x ∈ R,

with the cdf

FX(x) =

∫ x

−∞

1√
2σ2π

e−
(s−µ)2

2σ2 ds, µ ∈ R, σ2 ∈ R+, x ∈ R.
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Example 1.7.10 The continuous Uniform distribution has the density function

fX(x) =
1

b− a
, a, b ∈ R, x ∈ [a, b],

and fX(x) = 0 for x /∈ [a, b]. The cdf is explicitly available and reads

FX(x) =

∫ x

a

1

b− a
du =

x− a

b− a
, a, b ∈ R, x ∈ [a, b],

and FX(x) = 0 for x < a, FX(x) = 1 for x > b.

Example 1.7.11 The discrete Poisson distribution has the probability mass function

fX(x) =
e−λλx

x!
, λ ∈ R+, x = 1, 2, ...,

and fX(x) = 0 for x /∈ 1, 2, ... . The cdf reads

FX(x) =

x∑

k=0

e−λλx

k!
λ ∈ R+, x = 1, 2, ... .

Remark 1.7.12 The support of the density fX (or of the probability mass function) is the

range of values of the random variable X for which the density function is positive,

RX := {x ∈ R : fX(x) > 0},

The subscript X for fX will usually be omitted unless there is a possible ambiguity.

Definition 1.7.13 (Probability model) A collection of density functions or cumulative

distribution functions indexed by a set of unknown parameters θ, one density for each possible

value of θ in the d-dimensional parameter space Θ ⊂ Rd,

{f(x; θ), θ ∈ Θ, x ∈ RX} or {F (x; θ), θ ∈ Θ, x ∈ RX}

is referred to as a probability model.

Example 1.7.14 The probability model of a Binomial distribution is

f(x; θ) =

(
n

x

)

θx(1 − θ)n−x, 0 < θ < 1, 0 ≤ x ≤ n, n = 1, 2, ... .
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Definition 1.7.15 (Expectation operator) Let X be a random variable and f(x; θ), θ ∈
Θ an associated parametric family of densities, then E(·) is the expectation operator

E(X) =

∫ ∞

−∞
xf(x; θ)dx, for continuous random variables,

E(X) =
∑

xi∈RX

xif(xi; θ)dx, for discrete random variables.

Remark 1.7.16 For random variables X1 and X2 and the constants a, b, and c, E(·) satisfies

the following properties of a linear operator,

1. E(c) = c,

2. E(aX1 + bX2) = aE(X1) + bE(X2).

Definition 1.7.17 (Variance operator) Let X be a random variable and f(x; θ), θ ∈ Θ

an associated parametric family of densities, then V ar(·) is the variance operator

V ar(X) =

∫ ∞

−∞
(x− E(X))2f(x; θ)dx, for continuous random variables,

V ar(X) =
∑

xi∈RX

(xi − E(X))2f(x; θ)dx, for discrete random variables.

Remark 1.7.18 For stochastically independent random variables X1, X2 and the constants

a, b, and c, V ar(·) satisfies the following properties

1. V ar(c) = 0,

2. V ar(aX1 + bX2) = a2V ar(X1) + b2V ar(X2).

Definition 1.7.19 (Raw moments) A generalization of the mean is the definition of raw

moments,

µ′
r(θ) ≡ E(Xr) =

∫ ∞

−∞
xrf(x; θ)dx, r = 1, 2, ... .

Definition 1.7.20 (Central moments) A direct generalization of the variance is central

moments,

µr(θ) ≡ E((X − µ)r) =

∫ ∞

−∞
(x− µ)rf(x; θ)dx, r = 1, 2, ...,

where µ ≡ E(X) = µ′
1 denotes the mean.
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Definition 1.7.21 (Joint distribution function) Given a pair (X, Y ) of random vari-

ables, their joint distribution function is the function FXY of two real variables,

FXY : RX × RY → [0, 1], FXY (x, y) = P (X ≤ x, Y ≤ y).

The function F (x,∞) ≡ limy→∞ F (x, y) is called the marginal distribution function of X.

Similarly, the function F (∞, y) ≡ limx→∞ F (x, y) is called the marginal distribution of Y .

Remark 1.7.22 In the case where a subset T ∈ RX × RY is countable and the probability

P ((X, Y ) ∈ T ) = 1, the joint probability mass function (joint density function) is

fXY (x, y) = P (X = x, Y = y).

In the continuous case there is a joint density function fXY : RX × RY → R+ with

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)dxdy = 1 and FXY (x, y) =

∫ x

−∞

∫ y

−∞
fXY (u, v)dudv,

where FXY (x, y) denotes the joint cumulative distribution function.

Definition 1.7.23 (Covariance and correlation) If X and Y are jointly distributed ran-

dom variables, their covariance is the product moment

Cov(X, Y ) = E [(X − E(X))(Y − E(Y ))] .

For the case where Cov(X, Y ) = 0 the random variables X and Y are said to be uncorrelated.

The correlation between X and Y is

Corr(X, Y ) =
Cov(X, Y )

√

V ar(X)V ar(Y )
.

Remark 1.7.24 For random variables X, Y and Z and the constants a, b, and c, Cov(·)
satisfies the following properties

1. Cov(X, Y ) = E(XY ) − E(X)E(Y ),

2. Cov(X, Y ) = Cov(Y,X),

3. Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z),

4. V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X, Y ).
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Definition 1.7.25 (Conditional probability) The formula for the conditional probability

of event A given event B takes the form

P (A|B) =
P (A ∩B)

P (B)
, P (B) > 0.

Definition 1.7.26 (Conditional distribution functions) Let X and Y be random vari-

ables. If X and Y can attain only countably many different values and a joint probability

function exists, the conditional probability gives rise to the formula

fY |X(y|x) =
fXY (x, y)

fX(x)
, fX(x) > 0, y ∈ RY ,

where fY |X denotes the conditional density of Y given that X = x and

FY |X(y|x) =
P (Y ≤ y,X = x)

P (X = x)
, P (X = x) > 0,

denotes the conditional cdf. For uncountable many different values we define

fY |X(y|x) =
fXY (x, y)

fX(x)
and FY |X(y|x) =

∫ y

−∞
fY |X(v|x)dv

as the conditional density and conditional cdf, respectively.

Definition 1.7.27 (Stochastic independence) The random variables X and Y are said

to be stochastically independent if for any events A and B,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

Remark 1.7.28 The stochastic independence of X and Y is equivalent to the factorization

of the joint distribution function,

FXY (x, y) = FX(x)FY (y), x ∈ RX , y ∈ RY .

In particular, E(XY ) = E(X)E(Y ), or Cov(X, Y ) = E(XY ) − E(X)E(Y ) = 0. Similarly,

stochastic independence implies that for all x ∈ RX , y ∈ RY ,

fXY (x, y) = fX(x)fY (y), fX|Y (x|y) = fX(x), fY (y) > 0.

Remark 1.7.29 From Cov(X, Y ) = Corr(X, Y ) = 0 does not follow that X and Y are

stochastically independent. For example, suppose X ∼ N(0, 1) and Y = h(X) = X 2. Observe
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that E(XY ) = X3 = 0 = E(X)E(Y ) and therefore Cov(X, Y ) = Corr(X, Y ) = 0.

Definition 1.7.30 (Random sample) The sample X iid
(n) = (X1, X2, ..., Xn) is called a ran-

dom sample if the random variables (X1, ..., Xn) are independent and identically distributed.

Definition 1.7.31 (Sampling model) A sampling model is a set of random variables (X1,

X2, ..., Xn), a sample, with a certain probabilistic structure. The primary objective of the

sampling model is to relate the observed data to the probability model.

Remark 1.7.32 A statistical model therefore consists of both a probability model and a

sampling model. Particular examples are given below.

• Bernoulli model

Probability model:
{
f(x; θ) = θx(1 − θ)1−x, 0 ≤ θ ≤ 1, x = {0, 1}

}

• Normal model

Probability model:

{

f(x; θ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , θ = (µ, σ2) ∈ R × R+, x ∈ R

}

In each case the sampling model considers (X1, X2, ..., Xn) as a random sample.

1.7.2 Functions of random variables

Often, we find ourselves faced with functions of one or several random variables whose

distribution we need but we only know the distribution of the original variables. Below we

replicate techniques how to obtain the distributions (cf. Spanos 1999, chap. 11.7.1).

Theorem 1.7.33 (Change of variables for densities) Let X be a continuous random

variable defined on RX = (a, b) where a, b ∈ R, a < b with density fX(x) . Let Y be a random

variable defined Y = h(X) where h(·) is strictly monotonic and h(·) has a differentiable

inverse. Then the density function of Y is

fY (y) = fX(h−1(y))

∣
∣
∣
∣

dh−1(y)

dy

∣
∣
∣
∣
, RY = (h(a), h(b)),

which follows from FY (y) = FX(h−1(y)) using the chain rule.
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Example 1.7.34 Consider the random variable Y = exp(X) with X on RX = (−∞,∞)

being normally distributed. From Theorem 1.7.33 the density of Y is given by,

fY (y) =
1√

2πσ2
e−

(ln y−µ)2

2σ2
d ln(y)

dy
=

1

y

1√
2πσ2

e−
(ln y−µ)2

2σ2 ,

where RY = (e∞, e−∞) = (∞, 0), which is the density of the Log-Normal distribution.

Remark 1.7.35 If X is a continuous random variable with the density function fX(x) and

g is a function, then Y = g(X) is also a random variable and the expectation of g(X) is

computed from

E(Y ) = E(g(X)) =

∫ ∞

−∞
g(x)fX(x)dx.

Theorem 1.7.36 (Change of variables for joint densities) Let X and Y be continu-

ous random variables defined on RX and RY , respectively. Let Z = h(X, Y ) be a function of

X and Y . Its cdf can be derived via

FZ(z) = P (Z ≤ z) = P (h(X, Y ) ≤ z) =

∫ ∫

{(x,y):h(x,y)≤z}
f(x, y)dxdy.

Example 1.7.37 Consider the convolution of two independent random variables X and Y ,

that is Z = X + Y where the density functions take the form

fX(x) = e−x, x > 0, fY (y) = e−y, y > 0, RZ = (0,∞).

Using the general result of Theorem 1.7.36 as follows

FZ(z) =

∫ z

0

∫ z−x

0

e−x−ydxdy = −
∫ z

0

e−x−ydx

∣
∣
∣
∣

z−x

0

=

∫ z

0

e−x
(
1 − ex−z)

)
dx

=

∫ z

0

e−xdx− e−zz = −
(
e−z − 1

)
− e−zz = 1 − e−z − ze−z,

and the density function is fZ(z) = e−z + ze−z − e−z = ze−z, z > 0.

1.7.3 Stochastic processes

The basic concept required when working with models under uncertainty is that of stochastic

processes, which extends the notion of a random variable.

Definition 1.7.38 (Stochastic process) A stochastic process is simply an indexed collec-

tion {Xt}t∈T of random variables defined on the same probability space (Ω,F, P ), i.e. Xt is

a random variable relative to (Ω,F, P ), for each t in the index set T (henceforth time).
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Remark 1.7.39 We refer to the range of the random variable defined by the union of the

sets of values of RX(t) for each t as the state space of the stochastic process, R = ∪t∈TRX(t).

Definition 1.7.40 In the case where index set T is countable, we call {Xt}t∈T a discrete-

time stochastic process. On the other hand, when T is an uncountable set, such as an interval

on the real line, we call {Xt}t∈T a continuous-time stochastic process.

Definition 1.7.41 In the case where the state space R is a countable space, we call {Xt}t∈T

a discrete-state stochastic process. On the other hand, when R is an uncountable space we

call {Xt}t∈T a continuous-state stochastic process.

We proceed to define some dependence restrictions that will be useful in later applications,

because the concept of purely independent stochastic processes or random samples appears

to be too restrictive. Below we use a discrete-time notation but with minor modifications,

the concepts can be written in the more general notation 0 < t1 < t2 < ... < tn <∞.

Definition 1.7.42 (Independence) The stochastic process {Xt}t∈T is said to be indepen-

dent if the joint density function f(x1, x2..., xT ) := f{Xt}t∈T
(x1, x2..., xT ) can be factorized,

f(x1, x2, ..., xT ) =

T∏

i=1

fi(xi), (x1, x2, ..., xT ) ∈ R,

or similarly, the conditional density equals the unconditional density for τ > 0,

f(xk+τ |xk, xk−1, ..., x1) = f(xk+τ), k = 1, 2, ... .

Definition 1.7.43 (Asymptotic independence) The stochastic process {Xt}t∈T is said

to be asymptotically independent if as τ → ∞ f(xk+τ |xk, xk−1, ..., x1) ' f(xk+τ), k = 1, 2, ...,

i.e., elements become independent as the distance between them increases to infinity.

Definition 1.7.44 (Markov dependence) The stochastic process {Xt}t∈T is said to be

Markov dependent if f(xk+1|xk, xk−1, ..., x1) = f(xk+1|xk), k = 1, 2, ... .

This notion of dependence can be easily extended to higher-orders m. Then the stochastic

process is said to be Markov dependent of order m. A similar concept based on the first two

moments is the case of non-correlation or no linear dependence, which can be extended to

non-correlation of order m or even to asymptotic non-correlation (Spanos 1999, chap. 8.4).
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Markov chains

Probably the most well-known stochastic process is the so-called Markov chain, which is

a Markov process whose distribution (state space) is discrete (countable) while the time

dimension can either be discrete or continuous.

Definition 1.7.45 (Markov chain) The stochastic process {Xt}t∈{0,1,2,...} is said to be a

Markov chain if for arbitrary times 0 ≤ t1 < t2 < ... < tn

P (Xtn = xn|Xtn−1 = xn−1, Xtn−2 = xn−2, ..., Xt1 = x1) = P (Xtn = xn|Xtn−1 = xn−1).

The joint distribution of the process takes the form

P (Xtn = xn, Xtn−1 = xn−1, ..., Xt1 = x1) = P (Xt1 = x1)

n∏

k=2

P (Xtk = xk|Xtk−1
= xk−1),

where P (Xt1 = x1) is the initial condition, and p
(k)
ij := P (Xtk = j|Xtk−1

= i), k = 2, 3, ...,

the one-step transition probabilities from state i to state j.

Remark 1.7.46 A particular important case is when the process is homogeneous in time,

p
(k)
ij = pij, for all k = 2, 3, ..., the transition probabilities do not change over time. In this

case the n-step transition probabilities is obtained from the one-step transition probabilities.

Definition 1.7.47 (Martingale) A stochastic process {Xt}t∈N with E(|Xt|) < ∞ for all

t ∈ N is said to be a martingale if E(Xt|Xt−1, Xt−2, ..., X1) = Xt−1.

Remark 1.7.48 A stochastic process {Xt}t∈N with E(|Xt|) < ∞ for all t ∈ N is said to

be a martingale difference if E(Xt|Xt−1, Xt−2, ..., X1) = 0. The term martingale difference

stems from the fact that this process can always be generated as a difference of a martingale

process {Yt}t∈N, defining the process {Xt := Yt − Yt−1}t∈N,

E(Xt|Xt−1, Xt−2, ..., X1) = E(Yt|Yt−1, Yt−2, ..., Y1) − Yt−1 = 0.

Reversing the argument, {Yt =
∑t

k=1Xk}t∈N is a martingale.
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Chapter 2

Stochastic models in discrete time

2.1 Topics in difference equations

Literature: Ljungqvist and Sargent (2004, chap. 2), Sydsæter et al. (2005, chap. 11)

The objective of this chapter is mainly to recall basic concepts on difference equations. We

start after some preliminary definitions with deterministic difference equation and include

stochastics afterwards.

2.1.1 Definitions

Let t = 0, 1, 2, ... denote different discrete-time periods. Usually we refer to t = 0 as the

initial period. If x(t) is a function defined for t = 0, 1, 2, ..., we use x0, x1, x2, ... to denote

x(0), x(1), x(2), ..., and in general we write xt for x(t).

Definition 2.1.1 Let denote ∆ a linear operator that satisfies the properties

∆xt = xt − xt−1, ∆0xt = xt,

∆2xt = ∆(∆xt) = ∆xt − ∆xt−1 = xt − 2xt−1 + xt−2,

∆kxt = ∆
(
∆k−1xt

)
, k = 2, 3, ... .

We refer to ∆ as the difference operator.
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Remark 2.1.2 Let a, b ∈ R and t = 0, 1, 2, ...,

∆a = 0,

∆(ayt + bxt) = a∆yt + b∆xt,

∆ktk = k, k = 0, 1, 2, ...,

∆k+1tk = 0, k = 0, 1, 2, ... .

Definition 2.1.3 Let denote L a linear operator defined by

Lkxt = (1 − ∆)kxt = xt−k, L0 = 1, k ≥ 0.

We refer to L as the lag operator or backshift operator.

Remark 2.1.4 Let a ∈ R and S =
∑k

i=0(aL)i,

(aL)S =

k+1∑

i=1

(aL)i ⇒ (1 − aL)S = 1 − ak+1Lk+1

⇔
k∑

i=0

(aL)i =
1 − ak+1Lk+1

1 − aL
. (2.1)

Lemma 2.1.5 For any a 6= 1,
k∑

i=0

ai =
1 − ak+1

1 − a
.

Proof. An immediate implication of the geometric series in (2.1).

Lemma 2.1.6 For any a 6= 1,

k∑

i=0

iai =
1

1 − a

(
a− ak+1

1 − a
− kak+1

)

.

Proof. By inserting and collecting terms.

Definition 2.1.7 A difference equation is an equation for t ∈ Z of either type

G(t, xt,∆xt,∆
2xt, ...,∆

kxt) = 0, (2.2)

F (t, L0xt, ..., L
kxt) = F (t, xt, ..., xt−k) = 0, (2.3)

where k denotes the order, if k denotes the maximum time difference with respect to x.
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Definition 2.1.8 A linear difference equation of order k for t ∈ Z of the type

xt + c1xt−1 + ...+ ckxt−k = rt, c1, ..., ck ∈ R, (2.4)

where rt is a given series is referred to as the normal form. For rt = 0 the difference equation

is called homogeneous, for r 6= 0 we refer to (2.4) as inhomogeneous.

2.1.2 Deterministic difference equations

The following results and solution techniques are useful and are reproduced for later reference.

First-order linear difference equations

Assume in the following a first-order difference equation of the type (2.4),

xt = axt−1 + rt, a ∈ R. (2.5)

Given an initial value x0, we can solve (2.5) iteratively,

x1 = ax0 + r1,

x2 = ax1 + r2 = a2x0 + ar1 + r2,
...

xt = atx0 +

t−1∑

i=0

airt−i.

Exercise 2.1.9 Obtain the general solution to (2.5) using the lag operator.

For a 6= 1 and rt = r we obtain,

xt = atx0 + r
t−1∑

i=0

ai = atx0 + r
1 − at

1 − a
=

(

x0 −
r

1 − a

)

at +
r

1 − a
.

• For |a| < 1 the series converges to the equilibrium or stationary state

lim
t→∞

xt = lim
t→∞

(

x0 −
r

1 − a

)

at +
r

1 − a
=

r

1 − a
,

and the equation is called globally asymptotically stable. Two kinds of stability can be

identified, either xt converges monotonically to the equilibrium (a > 0), or xt exhibits

decreasing fluctuations or damped oscillations around the equilibrium state (a < 0).
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• For |a| > 1 the series diverges from the equilibrium state, except when the initial value

is the equilibrium state. Either xt increases monotonically (a > 0), or xt exhibits

increasing fluctuations or explosive oscillations around the equilibrium state (a < 0).

For a = 1 and rt = r we obtain,

xt = x0 + r

t−1∑

i=0

1i = x0 + rt,

i.e., the solution is a linear function of t.

Example 2.1.10 (Intertemporal budget constraint) Let at denote the value of assets

held at the end of period t. Further, let ct be the amount withdrawn for consumption and wt

the labor income during period t. Suppose r > 0 is the constant interest rate,

at = (1 + r)at−1 + wt − ct, a(0) = a0.

Using the property of the lag operator (2.1), we obtain the solution

(
1

1 + r

)t

at = a0 +
t−1∑

i=0

(
1

1 + r

)t−i

(wt−i − ct−i),

which denotes the present discounted value of the assets in the account at time t.

Exercise 2.1.11 (Cobweb model) Let total demand and supply of a nondurable good be

D = a− bpt, a, b > 0,

S = c + dpt−1, c, d > 0.

Market clearing demands that D(pt) = S(pt−1). Obtain the equilibrium price.

Second-order linear difference equations

The solution techniques for solving difference equations are similar to differential equations.

Compare the following two theorems to second-order differential equations. Consider a linear

second-order difference equation in normal form (2.4),

xt+2 + axt+1 + bxt = ct, a, b ∈ R, b 6= 0. (2.6)
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Suppose we found the particular solution of (2.6), e.g., for the case where ct = c we obtain

u∗ = c/(1+a+ b). The general solution of (2.6) requires to solve the homogeneous equation,

xt+2 + axt+1 + bxt = 0, a, b ∈ R, b 6= 0. (2.7)

We try to find solutions of the form xt = λt. Inserting these expressions into (2.6) yields the

characteristic equation λt(λ2 + aλ + b) = 0. The following theorem considers three cases.

Theorem 2.1.12 (cf. Sydsæter et al. (2005), Theorem 11.4.1) The equation

xt+2 + axt+1 + bxt = 0, a, b ∈ R, b 6= 0 has the following general solution.

(i) If a2 − 4b > 0, there are two distinct real roots,

x(t) = c1λ
t
1 + c2λ

t
2, where λ1,2 = −a

2
± 1

2

√
a2 − 4b.

(ii) If a2 − 4b = 0, there is one real double root,

x(t) = c1λ
t
1 + c2tλ

t
2, where λ1 = λ2 = −a

2
.

(iii) If a2 − 4b < 0, there are two conjugate complex roots,

x(t) = rt(c1 cos θt+ c2 sin θt), where r =
√
b, cos θ = − a

2
√
b
, θ ∈ [0, π],

where c1, c2 ∈ R.

Suppose an economy evolves according to a system of difference equations. If appropriate

initial conditions are imposed, then the linear system has a unique solution. An important

question is whether small changes in the initial conditions have any effect on the long-

run behavior of the solution. If small changes in the initial conditions lead to significant

differences in the long run behavior of the solution, then the system is unstable. If the effect

dies out as time approaches infinity, the system is called stable.

Consider in particular the second-order difference equation (2.6). If the general solution

of the associated homogeneous equation (2.7) tends to 0 as t→ ∞, for all values of arbitrarily

chosen constants, then the equation is called globally asymptotically stable.

Theorem 2.1.13 (cf. Sydsæter et al. (2005), Theorem 11.4.2) The equation

xt+2 + axt+1 + bxt = ct
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is called globally asymptotically stable if and only if the following two equivalent conditions

are satisfied

(i) The roots of the characteristic equation λ2 + aλ+ b = 0 have solutions with real parts

strictly less than 1 (moduli strictly less than 1).

(ii) |a| < 1 + b and b < 1.

Systems of linear difference equations

We consider a system of first-order linear difference equations in the normal form,

x1t = a11x1,t−1 + a12x2,t−1 + ...+ a1nxn,t−1 + r1t

x2t = a21x1,t−1 + a22x2,t−1 + ...+ a2nxn,t−1 + r2t

...

xnt = an1x1,t−1 + an2x2,t−1 + ...+ annxn,t−1 + rnt,

or in matrix notation,

xt = Axt−1 + rt, (2.8)

where

xt =







x1t

...

xnt






, A =







a11 · · · a1n

...
. . .

...

an1 · · · ann






, rt =







r1t

...

rnt






.

Remark 2.1.14 A system of n first-order linear difference equations can be written as an

n-th order linear difference equation, and vice versa.

Example 2.1.15 Consider the system

x1t = a11x1,t−1 + a12x2,t−1, (2.9)

x2t = a21x1,t−1 + a22x2,t−1. (2.10)

Using the lag operator we can write (2.10) as

(1 − a22L)x2t = a21x1,t−1 ⇔ (1 − a22L)x2,t−1 = a21x1,t−2.

Multiplying (2.9) by (1 − a22L) and inserting the last result yields,

(1 − a22L)x1t = (1 − a22L)a11x1,t−1 + a12a21x1,t−2

⇔ x1t = (a11 + a22)x1,t−1 + (a12a21 − a22a11)x1,t−2,
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which is a second-order difference equation.

Example 2.1.16 Consider the scalar second-order autoregression,

xt+1 = α + ρ1xt + ρ2xt−1 + rt+1.

Observe that we can represent this relationship as the system






xt+1

xt

1




 =






ρ1 ρ2 α

1 0 0

0 0 1











xt

xt−1

1




 +






1

0

0




 rt+1,

which is a system of first-order vector difference equation (2.8).

Example 2.1.17 Consider the scalar second-order autoregression with moving average terms,

xt+1 = α + ρ1xt + ρ2xt−1 + rt+1 + γrt.

Observe that we can represent this relationship as the system









xt+1

xt

rt+1

1









=









ρ1 ρ2 γ α

1 0 0 0

0 0 0 0

0 0 0 1

















xt

xt−1

rt

1









+









1

0

1

0









rt+1,

which is a system of first-order vector difference equation (2.8).

The general solution of the associated homogeneous equation system to (2.8),

xt = Axt−1, (2.11)

can be obtained as follows. We try a solution where xt = Wλt, for λ 6= 0 and the unknown

n× 1 vector W = (w1, ..., wn)
>. Inserting into (2.11) yields

Wλt = AWλt−1 ⇔ (A− λI)W = 0,

where I is the n×n identity matrix. Thus admissible solutions for λ are the eigenvalues of A

and admissible solutions for W are the associated eigenvectors. Suppose rank(A− λI) < n,

the characteristic equation is a nth-order polynomial in λ,

det(A− λI) = 0.
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Note that if rank(A−λI) = n, then det(A−λI) 6= 0 and we would have only trivial solutions

W = 0. The n characteristic roots are the eigenvalues of the coefficient matrix A. For any

given λi, i = 1, ..., n we obtain a linear homogeneous system in W (i),

(A− λiI)W
(i) = 0,

where W (i) are the eigenvectors associated with λi. If we obtain n distinct roots, the general

solution of (2.11) reads

xt = c1λ
t
1W

(1) + c2λ
t
2W

(2) + ... + cnλ
t
nW

(n), c1, ..., cn ∈ R.

A necessary and sufficient condition for the system (2.8) to be globally asymptotically

stable is that all the eigenvalues of the matrix A have moduli (strictly) less than 1. In this

case the solution of the associated homogeneous system (2.11) converges to 0.

Theorem 2.1.18 (cf. Sydsæter et al. (2005), Theorem 11.6.2) If all the eigenvalues

of A = (aij)n×n have moduli (strictly) less that 1, the difference equation

xt = Axt−1 + r,

is globally asymptotically stable. Any solution xt converges to the constant equilibrium state

vector (I − A)−1r.

The following theorem is useful to show that the coefficient matrix A has only eigenvalues

with moduli less than 1.

Theorem 2.1.19 (cf. Sydsæter et al. (2005), Theorem 11.6.3) Let A = (aij) be an

arbitrary n× n matrix and suppose that

n∑

j=1

|aij| < 1 for all i = 1, ..., n.

Then all eigenvalues of A have moduli less than 1.

2.1.3 Stochastic difference equations

Many macro economists would refer to first-order stochastic linear vector difference equations

together with Markov chains as their workhorses (Ljungqvist and Sargent 2004). Indeed,

they are useful because they describe a time series with parsimony.
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Consider the system difference equation in the normal form similar to (2.8),

xt+1 = Axt + Crt+1, (2.12)

for t = 0, 1, 2, ... where xt is an n × 1 state vector, A is an n × n matrix, C is an n × m

matrix, rt is an m × 1 vector. We now refer to rt as a random variable satisfying certain

assumptions. Because rt is random, at least for t 6= 0 the state variable xt will be a random

variable as well, of which the properties are now of interest.

Definition 2.1.20 (White noise process) Suppose that rt+1 is an m × 1 random vector

of the discrete-time and continuous-state stochastic process {rt}t∈N with

E(rt+1) = 0 for all t ∈ N,

E(rtr
>
t−j) =

{

I if j = 0

0 if j 6= 0
,

where I is the m×m identity matrix. Then rt+1 is said to be (vector) white noise.

Definition 2.1.21 (State-space system) Let {rt}t∈N be a white noise process. Then

xt+1 = Axt + Crt+1,

yt = Gxt,

where yt is a vector of variables observed at t, is said to be a state-space system.

If yt includes linear combinations of xt only, it represents a linear state-space system.

Example 2.1.22 Consider the scalar second-order autoregression,

xt+1 = α + ρ1xt + ρ2xt−1 + rt+1.

Observe that we can put this relationship in the form of a linear state-space representation,






xt+1

xt

1




 =






ρ1 ρ2 α

1 0 0

0 0 1











xt

xt−1

1




 +






1

0

0




 rt+1,

xt =
[

1 0 0
]






xt

xt−1

1




 .
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In analogy to deterministic difference equations, (2.12) can be solved for xt iteratively as

a function of t and realizations of rt, provided we have a given initial vector x0 for t = 0,

xt+1 = At+1x0 +

t∑

j=0

AjCrt+1−j . (2.13)

However, because xt is a random variable the solution does not provide the actual value

or the realization of xt for t ≥ 0, but gives the joint distribution of xt at time t given the

available information set at t − 1 and distributional assumptions of the random shocks rt.

Often, the form (2.13) is referred to as the moving average representation.

Definition 2.1.23 (Impulse response function) Suppose that the eigenvalues of A in

the solution (2.13) have moduli strictly less than unity (except for the constants). Defined

as a function of lag j, hj = AjC, is referred to as the impulse response function.

Both the solution and the associated impulse response function show how xt+1 is affected by

lagged values of the shocks. Thus, the contribution of shock rt−j to xt is AjC.

Distributional properties and limiting distribution

In order to understand the distributional properties of xt we start by assuming that {rt}t∈N

is vector white noise, that is E(rt) = 0, E(rtr
>
t ) = I, and E(rtr

>
j ) = 0 for all j 6= t. Apply

the expectation operator to (2.12), and obtain the mean defining µt ≡ E(xt) as

E(xt+1) = AE(xt) + CE(rt+1)

⇔ µt+1 = Aµt ⇒ µt = c1λ
t
1W

(1) + ... + cnλ
t
nW

(n), c1, ..., cn ∈ R

for the case where we have n distinct roots. If we assume that all of the eigenvalues of A

are strictly less than unity in modulus, except possibly for one that is affiliated with the

constant term, then xt possesses a stationary mean satisfying µ = µt+1 = µt, or equivalently,

(I − A)µ = 0.

It characterizes the mean µ as an eigenvector associated with the single unit eigenvalue.

Notice that

xt+1 − µt+1 = A(xt − µt) + Crt+1. (2.14)

Also, the fact that the remaining eigenvalues of A are less that unity in modulus implies

that starting from any µ0, the expected value converges towards µt → µ. In that we regard

the initial condition x0 as being drawn from a distribution with mean µ0 = E(x0).

72



From equation (2.14), postmultiplying both sides with (xt+1 − µt+1)
> and applying the

expectation operator, we can compute that the stationary variance matrix satisfies

E
[
(xt+1 − µt+1)(xt+1 − µt+1)

>] = E
[
(A(xt − µt) + Crt+1)(A(xt − µt) + Crt+1)

>]

= E
[
A(xt − µt)(xt − µt)

>A>]+ E
[
Crt+1r

>
t+1C

>]

= AE
[
(xt − µt)(xt − µt)

>]A> + CC>

⇔ γt+1,0 = Aγt,0A
> + CC>,

defining the variance matrix

γt,0 ≡ E
[
(xt − µt)(xt − µt)

>] .

The equation is a discrete Lyapunov equation in the n×n matrix γt,0. It can be solved using

specialized software, or e.g., using Matlab (Ljungqvist and Sargent 2004, p.45).

Similarly, by virtue of µt+1 = Aµt and (2.12), it can be shown that

γt,j ≡ E
[
(xt+j − µt+j)(xt − µt)

>] = Ajγt,0. (2.15)

Once we solved for the autocovariance function γt,0, the remaining second moments γt,j can

be deduced from the given formula. The sequence of γt,j as a function of j is also called the

autocovariogram. Defining long-run stationary moments as

µ∞ ≡ lim
t→∞

µt, (2.16)

γ∞,0 ≡ lim
t→∞

γt,0, (2.17)

we pinned down two moments of the long-run or limiting distribution of xt. Observe that we

obtained this result without making distributional assumptions, but only requiring zero first

moment and constant variance for the stochastic shocks. Further note that although the

stochastic process {rt}t∈N by assumption is white noise, from (2.15) obviously the stochastic

process {xt}t∈N has asymptotic non-correlation.

Exercise 2.1.24 Consider the following first-order difference equation in matrix notation

[

yt

1

]

=

[

a b

0 1

][

yt−1

1

]

+

[

σε

0

]

εt,

where {εt}t∈N is white noise, E(εt) = 0 and E(ε2t ) = 1. Obtain the mean, µ∞ ≡ limt→∞ µt,

and the variance γ∞,0 ≡ limt→∞ γ0,t of the limiting distribution.
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Sunspots and indeterminacy

Let {εt}t∈T be a stochastic process and suppose there is the relationship

xt =
1

a
Et(xt+1) + εt, a 6= 0. (2.18)

A solution is an expression such that

Et(xt+1) = (xt − εt)a.

In what follows, we restrict our attention only to linear processes that fulfill the equation.

Then all admissible solutions satisfy the condition,

xt+1 = (xt − εt)a+ η̃t+1, (2.19)

with an arbitrary random variable η̃t satisfying Et(η̃t+1) = 0. Therefore the solution can

be indetermined, because it depends on arbitrary random extrinsic events. Suppose η̃t is a

function of fundamental shocks εt with Et(εt+1) = 0 and sunspots ηt with Et(ηt+1) = 0,

η̃t = ηt + δεt, δ ∈ R.

Note that for Et(εt+1) 6= 0, the equations demand δ = 0. Assume that |Corr(ηt, εt)| < 1,

i.e., contemporaneous fundamental and sunspot shocks are not perfectly correlated.

Observe that the characteristic equation is λ = a. For the case where |a| < 1 the solution

to the associated homogeneous equation to (2.19) is stable. If the infinite geometric series

converges, it can be shown that the general solution to the inhomogeneous equation is

xt = δεt + (δ − 1)
∞∑

i=1

aiεt−i +
∞∑

i=0

aiηt−i.

Hence, there is an infinite number of admissible solutions for different values of δ, and the

solution is indetermined. These depend on contemporaneous fundamental shocks (δ 6= 0),

lagged fundamental shocks (δ 6= 1) and contemporaneous and lagged sunspot shocks ηt.

If |a| > 1, we use the inverted lag operator L−kxt = xt+k, solving (2.19) forward to get

(
1 − (1/a)L−1

)
xt = εt − (1/a)η̃t+1.
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If the infinite geometric series converges, we may write

xt =
∞∑

i=0

a−i (εt+i − (1/a)η̃t+1+i) .

Because the solution depends on future realizations (not on expected future realizations),

we shift the solution one period to the future and apply the expectation operator to obtain

Et(xt+1) =

∞∑

i=0

a−iEt (εt+1+i) ,

where we used the law of iterated expectations. Inserting into (2.18) yields (a 6= 0)

xt =

∞∑

i=0

a−i−1Et (εt+1+i) + εt =

∞∑

i=1

a−iEt (εt+i) + εt.

The solution depends on contemporaneous fundamental shocks, and expected future shocks

(Etεt+i 6= 0), but not on sunspot shocks. The solution therefore is determined.

Exercise 2.1.25 (Inflation and indeterminacy) Consider the following macroeconomic

model (a reduced form description of a new-Keynesian model as in Clarida et al. 2000),

yt = ψ(Et(πt+1) − it), ψ > 0,

it = φπt, φ > 0.

Output yt is negatively related to the real interest rate, it − Et(πt+1), and the central bank

responds with a Taylor rule setting the nominal interest rate it to the inflation rate πt. Should

the central bank respond actively to inflation (φ > 1)?

2.2 Discrete-time optimization

Literature: Stokey et al. (1989), Ljungqvist and Sargent (2004, chap. 3,9), Sydsæter et al.

(2005, chap. 12), (Wälde 2009, chap. 2,3,8,9)

This chapter briefly summarizes solution techniques to discrete-time dynamic optimization

problems. Most of the chapter is concerned with dynamic programming.
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2.2.1 A typical control problem

Consider a system that is observed at times t = 0, 1, ..., T . Suppose the state of the system

at time t is characterized by a real number xt. Assume that the initial state x0 is historically

given, and the system is steered through time by a sequence of controls ut ∈ U . Briefly

formulated, the problem reads

max

T∑

t=0

f(t, xt, ut) s.t. xt+1 = g(t, xt, ut), x0 given.

Among all admissible sequence pairs ({xt}, {ut}) find one, ({x∗t}, {u∗t}), that makes the value

of the objective function as large as possible. Such an admissible pair is called an optimal

pair, and the corresponding sequence {u∗
t}T

t=0 is called an optimal control.

2.2.2 Solving using classical calculus methods

Consider the most simple version of a dynamic stochastic general equilibrium model as a

straightforward extension of the following deterministic model of overlapping generations.

A simple deterministic overlapping generations model

Let there be an individual living for two periods with utility function, Ut ≡ U(ct, ct+1), where

consumption in the first and second period is denoted by ct and ct+1, respectively. The

individual receives labor income wt in both periods, and allocates income to consumption,

ct and ct+1, or saving, st which increases consumption possibilities in the second period

generating, (1 + rt+1)st. Summarized the control problem reads

max U(ct, ct+1) s.t. ct+1 = wt+1 + (1 + rt+1)(wt − ct).

For simplicity, the state variable is zero at the beginning of the first and at the end of the

second period, that is by assumption there is no initial wealth and the individual does not

leave any bequest. This points to the fact that timing within a period is an important issue

in discrete-time models. Here, the budget constraint reveals some insights.

Observe that there are no interest payments in the first period, wages are paid and

consumption takes place at the end of a period. Because savings, st = wt−ct, are used in the

form of productive capital in the second period, returns rt+1 are determined in t+1. Without

any further restrictions, we implicitly assume perfect capital markets, that is individuals can

save and borrow any amount they desire at the rate rt+1.
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The problem can be solved simply by defining the Lagrangian,

L = U(ct, ct+1) + λ ((1 + rt+1)(wt − ct) + wt+1 − ct+1) ,

where first-order conditions are

Lct = Uct − λ(1 + rt+1) = 0,

Lct+1 = Uct+1 − λ = 0.

Combining the conditions gives a necessary condition for optimality,

Uct = Uct+1(1 + rt+1) ⇔ Uct

Uct+1

=
1

(1 + rt+1)−1
. (2.20)

Obviously, optimal behavior requires that the marginal rate of substitution of consumption

ct and ct+1 given a consumption bundle (ct, ct+1) must equal their relative price. Otherwise,

individuals could increase their overall utility simply by adjusting their consumption levels,

dUt = Uctdct + Uct+1dct+1 = 0 ⇔ dct+1

dct
= − Uct

Uct+1

.

An important measure is the intertemporal elasticity of substitution of consumption at

two points in time,

θct,ct+1 ≡ −Uct/Uct+1

ct/ct+1

d(ct/ct+1)

d(Uct/Uct+1)
= − d ln(ct/ct+1)

d ln(Uct/Uct+1)
, (2.21)

measuring the percentage change in relative consumption by a percentage change in their

relative price. For the Cobb-Douglas case, Ut = U(ct, ct+1) = cγt c
1−γ
t+1 we obtain

θct,ct+1 = −
γ

1−γ
ct+1/ct

ct/ct+1

d(ct/ct+1)
γ

1−γ
d(ct+1/ct)

= − 1

(ct/ct+1)2

d((ct+1/ct)
−1)

d(ct+1/ct)
= 1.

Note that overall utility, Ut = U(ct, ct+1), is separable into instantaneous utility levels, u,

lnUt = γ ln ct + (1 − γ) ln ct+1 = γu(ct) + (1 − γ)u(ct+1). (2.22)

The time preference rate is the rate at which future utility is discounted. Technically, it is

77



the marginal rate of substitution of instantaneous utility u(ct) and u(ct+1) minus one,

ρ =
Uu(ct)

Uu(ct+1)

− 1 =
γ

1 − γ
− 1. (2.23)

Hence, the rate of time preference is positive for γ > 1/2, which makes sense as γ points to the

relative importance of instantaneous utility in (2.22). Accordingly, for γ > 0, instantaneous

utility in t is preferred to instantaneous utility in t+ 1.

This allows to derive an intuitive condition under which consumption increases over time

(or equivalently where savings are positive for invariant labor income). Using the utility

function Ut = U(ct, ct+1) = cγt c
1−γ
t+1 and the first-order condition (2.20),

γ

1 − γ

ct+1

ct
= 1 + rt+1 ⇔ ct+1 =

1 − γ

γ
(1 + rt+1)ct,

we obtain

ct+1 > ct ⇔ 1 + rt+1 >
γ

1 − γ
⇔ rt+1 > ρ.

Thus consumption increases if the interest rate is higher than the time preference rate, that

is returns to saving are sufficiently high to overcompensate impatience.

A simple stochastic overlapping generations model

Let there be an aggregate technology

Yt = AtK
α
t L

1−α. (2.24)

Suppose {At}t∈T is a stochastic process. By assumption, the fundamental source of uncer-

tainty is exogenous resulting from the technology used by firms,

At ∼ (A, σ2), At > 0,

where {At}t∈T is a continuous-state stochastic process with mean A and variance σ2. At the

beginning of period t, the capital stock Kt is inherited from the previous period, the capital

stock therefore is predetermined. Then, total factor productivity is revealed and firms choose

factor inputs, and households receive factor income and choose their consumption level.

The crucial assumption is that wages and interest payments are known with certainty at

the end of the period. As a result of the timing, firms do not bear any risk and pay marginal

product of labor, wt = YL, and capital, rt = YK, to workers and capital owners, respectively.

Therefore, workers and capital owners bear all risk because their returns are uncertain. Let

78



overall utility be time separable, the control problem reads

max Et {u(ct) + βu(ct+1)} s.t. ct+1 = wt+1 + (1 + rt+1)(wt − ct),

where β = 1/(1+ρ), ρ > 0 denotes the subjective discount factor measuring the individual’s

impatience to consume. Despite the uncertainty about wt+1 and rt+1, the dynamic budget

constraint has to hold. In that contingent claims have to ensure that negative savings are

indeed settled in the second period. Inserting the budget constraint yields,

max {u(ct) + βEtu((1 + rt+1)(wt − ct) + wt+1)}

⇔ max

{

u(ct) + β

∫ ∞

0

f(s)u((1 + rs,t+1)(wt − ct) + ws,t+1)ds

}

,

where f(s) is the density function of At given the information set t. Optimality requires

u′(ct) − β

∫ ∞

0

f(s)u′((1 + rs,t+1)(wt − ct) + ws,t+1)(1 + rs,t+1)ds = 0

⇔ u′(ct) = βEtu
′((1 + rt+1)(wt − ct) + wt+1)(1 + rt+1). (2.25)

Hence, marginal utility in t has to be equal to expected discounted instantaneous marginal

utility in t + 1 corrected by the interest rate effect.

In some cases, where the instantaneous utility function u allows to separate the capital

returns from consumption in the first period, an explicit expression or closed-form solution

for ct can be obtained. Using instantaneous utility u(ct) = ln ct, the first-order condition in

(2.25), and the assumption wt+1 = 0, which turns out to be necessary for a closed form,

1/ct = βEt
1 + rt+1

(1 + rt+1)(wt − ct)
⇔ (1 + β)ct = wt, (2.26)

where from the budget constraint wt = ct + (1 + rt+1)
−1ct+1. Inserting yields

(1 + β)ct = ct + (1 + rt+1)
−1ct+1 ⇔ ct+1 = β(1 + rt+1)ct, (2.27)

which has the same structure as in the deterministic setup. In contrast to the solution under

certainty there is still uncertainty about the consumption level in t + 1. Nonetheless, the

optimal consumption level in the first period is available in closed form, ct = 1/(1 + β)wt.

We now aggregate over all individuals in order to find the reduced form of the overlapping
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generations model. Consumption of all young individuals in period t is given from (2.26),

Cy
t =

wtN

1 + β
=

wtL

1 + β
=

1

1 + β
(1 − α)Yt,

where we used the fact that under perfect factor markets, using Euler’s theorem provided

the production function has constant returns to scale, Yt = rtKt +wtL. Consumption of the

old individuals from (2.27) is

Co
t = β(1 + rt)Nct−1 =

β

1 + β
(1 + rt)Lwt−1 =

β

1 + β
(1 + rt)(1 − α)Yt−1.

Aggregate consumption in t therefore reads

Ct = Cy
t + Co

t =
1

1 + β
(1 − α) (Yt + β(1 + rt)Yt−1) .

Market clearing on the goods market demands that supply equals demand,

Yt +Kt = Ct + It, (2.28)

where the left-hand side gives supply as current production and the capital stock sold by

the old generation as it is of no use in the next period. The right-hand side gives demand

as total consumption plus investment. Investment is determined by the aggregate savings of

the young generation,

It = L(wt − ct) =

(

1 − 1

1 + β

)

Lwt =
β

1 + β
(1 − α)Yt.

Because the old generation leaves no bequests, the capital stock Kt+1 is fully determined by

investment of the young generation,

Kt+1 = It =
β

1 + β
(1 − α)AtK

α
t L

1−α,

which is a non-linear first-order stochastic difference equation in the capital stock. Analyzing

the properties of stochastic processes with stochastic coefficients in general is fairly complex.

For the reduced form equation above, however, a log-transformation yields

lnKt+1 = ln

(
β

1 + β
(1 − α)L1−α

)

+ α lnKt + lnAt

≡ ln

(
β

1 + β
(1 − α)L1−α

)

+ µε + α lnKt + σεεt, εt ∼ (0, 1),
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where we defined µε = E(lnAt), and σεεt = lnAt − E(lnAt). Because 0 < α < 1, it is a

stable linear first-order stochastic difference equation converging towards a stochastic steady

state, or more precisely towards some stationary distribution of the log capital stock. It can

be written as a stochastic difference equation in normal form,






lnKt+1

εt+1

1




 =






α σε b

0 0 0

0 0 1











lnKt

εt

1




+






0

1

0




 εt+1,

where εt is white noise with E(εt) = 0 and V ar(εt) = 1, and b denotes a constant,

b = ln

(
β

1 + β
(1 − α)AL1−α

)

+ µε.

From this we obtain the first two moments of the stationary distribution as

E(lnKt) =
b

1 − α
=

1

1 − α
ln

(
β

1 + β
(1 − α)L1−α

)

+
µε

1 − α
, V ar(lnKt) =

σ2
ε

1 − α2
.

Given a specific distributional assumption for At, we could explicitly relate µε and σε to the

moments of the fundamental uncertainty, At, that is as function of A and σ2, respectively.

2.2.3 Solving using dynamic programming

Below, we closely follow Sydsæter et al. (2005, chap. 12). Return to the control problem,

max
T∑

t=0

f(t, xt, ut) s.t. xt+1 = g(t, xt, ut), x0 given.

Suppose we choose arbitrary values for {ut}T
t=0 with ut ∈ U for all t, the states {xt}T

t=1 can

be computed recursively. Each choice of controls give rise to a sequence or a path which

usually have different utility or value
∑T

t=0 f(t, xt, ut). Often, controls ut that depend only

on time are referred to as open-loop controls, while controls that depend on the state of the

system are called closed-loop controls, feedback controls, or policies.

Bellman’s principle

Suppose that at time t = s the state is xs = x ∈ R. The best we can do in the remaining

periods is to choose {ut}T
t=s and thereby also {xt}T

t=s+1 to maximize
∑T

t=s f(t, xt, ut) with

xs = x subject to xt+1 = g(t, xt, ut) for t > s. The optimal control, {u∗
t}T

t=0, will depend on
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x, in particular, u∗s = u∗(xs) = u∗(x). We define the value function at time s,

Js(x) = max
us,...,uT∈U

T∑

t=s

f(t, xt, ut) =

T∑

t=s

f(t, x∗t , u
∗
t ), (2.29)

where

xs = x, xs+1 = g(s, xs, us). (2.30)

If we choose us = u ∈ U , then at time t = s we obtain the reward f(s, x, u) and the state

changes to xs+1 = g(s, x, u) as from (2.30). The highest reward starting from the state xs+1

is Js+1(xs+1) = Js+1(g(s, x, u)) according the definition in (2.29). Hence the best choice of

us = u at time s must be a value of u that maximizes f(s, x, u) + Js+1(g(s, x, u)),

Js(x) =

{

maxu∈U {f(s, x, u) + Js+1(g(s, x, u))} , s = 0, 1, ..., T − 1

maxu∈U {f(T, x, u)} , s = T
. (2.31)

Note that often (2.31) is referred to as the fundamental equation of dynamic programming,

because it is the basic tool for solving dynamic optimization problems:

1. Find the optimal function JT (x) = maxu∈U f(T, x, u) for s = T , where (usually) the

maximizing value of u will depend on x, and was denoted by u∗
T (x) above.

2. Use (2.31) in order to determine JT−1(x) and the corresponding u∗T−1 of the preceding

period, and work backwards recursively to determine all the value functions and hence

the optimal control {u∗t}T
t=0.

Example 2.2.1 (Overlapping generations) Consider the following control problem of

overlapping generations, with instantaneous utility u′ > 0 and u′′ < 0,

max

T∑

t=0

βtu(ct) s.t. at+1 = (1 + rt)at + wt − ct, a0 = a = 0, T = 1,

where we introduced a state variable at ≥ 0.

1. find the optimal value JT (a) = maxc≥0 βu(c1). Note that the maximum of βu(c1) can be

obtained by the corner solution βu(c1) = βu(w1+r1a1) such that c∗1(a) = w1+(1+r1)a1.

It is reasonable that a1 = a1(a) because a1 = w0 − c0 + (1 + r0)a0, a0 = a0(a).

2. determine JT−1(a) recursively for the preceding (that is the initial) period from

J0(a) = max
c≥0

{u(c0) + JT (a)} = max
c≥0

{u(c0) + βu(w1 + (1 + r1)a1)},
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which becomes using a0 = a0(a) = a = 0,

J0(a) = max
c≥0

{u(c0) + βu(w1 + (1 + r1)(w0 − c0))}.

The optimal c∗0(a) satisfies the condition

u′(c0) + βu′(w1 + (1 + r1)(w0 − c0))(−(1 + r1)) = 0

⇔ u′(c0)

u′(w1 + (1 + r1)(w0 − c0))
= β(1 + r1).

It coincides with the optimality condition u′(c0)/u
′(c1) = β(1+r1) in the model of overlapping

generations in (2.20), where U(c1, c2) = cγ1c
1−γ
2 , and the factor β = (1 − γ)/γ.

In simple cases, the control problem can be solved quite easily by ordinary calculus methods.

In principle, all finite horizon dynamic programming problems can be solved using classical

methods, however, the method becomes quite messy if the horizon T is large.

Infinite horizon

Economists often study dynamic optimization problems over an infinite horizon. This avoids

specifying what happens after the finite horizon is reached, as well as having the horizon as

an extra exogenous variable that features in the solution. Consider the following problem

max

∞∑

t=0

βtf(xt, ut) s.t. xt+1 = g(xt, ut), x0 given, (2.32)

where β ∈ (0, 1) is a constant discount factor, and x0 is a given number in R. Note that

neither f nor g depends explicitly on t. For this reason, problem (2.32) is called autonomous.

Assume that the infinite sum converges, that is f satisfies some boundedness conditions.

Bellman’s principle

Suppose that at time t = s the state is xs = x ∈ R. The optimal control {u∗t}∞t=s defines the

value function as

Js(x) =

∞∑

t=s

βtf(x∗t , u
∗
t ), V (x) ≡ J0(x),

Roughly, if we choose the control u, the immediate reward is βsf(x, u) and the state changes

to xs+1 = g(x, u). Choosing an optimal control sequence from t = s + 1 on gives a total
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reward over all subsequent periods that equals Js+1(g(x, u)) = βJs(g(x, u)). For s = 0,

V (x) = max
u∈U

{f(x, u) + βV (g(x, u))} , (2.33)

is a necessary condition for (2.32) which is the Bellman equation, i.e., the first step of the

three-steps procedure for solving discrete infinite horizon problems (Wälde 2009, chap. 3.3).

As a corollary, we can compute the first-order condition which reads

fu(x, u) + βV ′(g(x, u))gu(x, u) = 0, (2.34)

which is the solution to the control problem (2.32) and makes u∗ = u(x) a function of the

state variable. Note that (2.34) is a first-order difference equation in xs, for any s ≥ 0

fu(xs, us) + βV ′(xs+1)gu(xs, us) = 0, (2.35)

because the future looks exactly the same at time 0 as at time s. As we usually do not know

the functional form of V (x), or say V ′(x), we need to go through two further steps in order

to eliminate the costate variable V ′, replacing it by known functions of f and g.

In a second step, we determine the evolution of the costate variable. Replacing the control

variable us by the optimal control u∗s = us(xs) gives the maximized Bellman equation,

V (xs) = f(xs, us(xs)) + βV (g(xs, us(xs))).

Computing the derivative with respect to xs, we obtain using the envelope theorem

V ′(xs) = fx(xs, us(xs)) + βV ′(xs+1)gx(xs, us). (2.36)

Interpreted as a shadow price, it gives the value of a marginal increase in the state variable.

As the final step we insert the first-order condition (2.35),

V ′(xs+1) = − 1

β

fu(xs, us)

gu(xs, us)
, V ′(xs+2) = − 1

β

fu(xs+1, us+1)

gu(xs+1, us+1)
,

into (2.36) shifted one period ahead to obtain

V ′(xs+1) = fx(xs+1, us+1) + βV ′(xs+2)gx(xs+1, us+1)

⇔ fu(xs, us)

gu(xs, us)
= β

fu(xs+1, us+1)

gu(xs+1, us+1)
gx(xs+1, us+1) − βfx(xs+1, us+1), (2.37)
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which is a generalized version of the discrete-time Euler equation.

Example 2.2.2 (Infinite horizon) Consider the following infinite horizon control problem

with instantaneous utility u′ > 0 and u′′ < 0,

max

∞∑

t=0

βtu(ct) s.t. at+1 = (1 + rt)at + wt − ct, a0 = a = 0,

where at ≥ 0 denotes individual’s real wealth. Observe that

f(at, ct) = u(ct) ⇒ fa = 0, fc = u′(ct),

g(at, ct) = wt − ct + (1 + rt)at ⇒ ga = 1 + rt, gc = −1.

Going step-by-step through the suggested procedure or just plugging the partial derivatives in

the generalized Euler equation (2.37) gives the necessary condition,

−u′(ct) = −βu′(ct+1)(1 + rt+1) ⇔ u′(ct)

u′(ct+1)
= β(1 + rt+1), (2.38)

which is exactly the same condition for the overlapping generations model. Apparently, the

change in optimal consumption does not depend on the time horizon. Be aware, however,

that the consumption level could (indeed should) depend on the planning horizon.

In the example, the implicit timing is different to models where at+1 = (1+rt)(wt−ct+at).

Observe, however, it does not matter for the Euler equation.

2.2.4 Stochastic control problems

This section considers how to control a dynamic system subject to random disturbances.

Stochastic dynamic programming is a central tool for tackling this problem.

We consider the following infinite horizon stochastic control problem,

maxE

∞∑

t=0

βtf(Xt, ut), Xt+1 = g(Xt, ut, Zt), x0 = x, z0 = z, (x, z) ∈ R
2, (2.39)

where {Zt}∞t=0 is a Markov dependent stochastic process, each random variable defined on

the same probability space (Ω,F, P ). Note that P (Zt+1 = zt+1|Zt = zt) as well as functions f

and g do not explicitly depend on t making the control problem autonomous or stationary.

For s ≥ 0, each optimal choice u∗s = u∗s(Xs, Zs) will be a function of the current state Xs

and the random variable Zs, to which we refer as Markov policies or Markov controls.
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Bellman’s principle

The heuristic argument for the optimality equation works just as well in the stochastic control

problem because of the autonomous formulation and the Markov property of the stochastic

process the future looks exactly the same at time t = s as it does at time t = 0, however,

with the next periods value function discounted at β. Hence the Bellman equation reads

V (x, z) = max
u∈U

{f(x, u) + βE0(V (X1, Z1))}, (2.40)

defining the expectation operator E0(V (X1, Z1)) ≡ E(V (g(x, u, z), Z1)|X0 = x, Z0 = z).

Observe that the term z enters the value function, which is considered as an exogenous state

variable. There are cases, however, where this state variable is endogenous as well.

Observe that the Bellman equation again is a functional equation which determines the

unknown function V that occurs on both sides. Once V is known, the optimal Markov control

is obtained from maximizing in the optimality equation. Note that certain boundedness

conditions on f are assumed to hold (Sydsæter et al. 2005, chap. 12.7).

We now proceed with the three-steps procedure for solving infinite horizon stochastic

control problems (Wälde 2009, chap. 9). As a corollary, we obtain first-order conditions,

fu(x, u) + βE0 (Vx(g(x, u, z), Z1)gu(x, u, z)) = 0,

which basically is a first-order stochastic difference equation,

fu(Xs, us) + βEs (Vx(Xs+1, Zs+1)gu(Xs, us, Zs)) = 0, (2.41)

indeed providing a functional relationship of the control and the state variables.

In a second step, we determine the evolution of the costate variable. Using the maximized

Bellman equation,

V (Xs, Zs) = f(Xs, u
∗
s) + βEs(V (Xs+1, Zs+1)),

where u∗s = us(Xs, Zs), and the envelope theorem gives the (evolution of the) costate as

Vx(Xs, Zs) = fx(Xs, us(Xs, Zs)) + βEs (Vx(Xs+1, Zs+1)gx(Xs, us(Xs, Zs), Zs)) . (2.42)

As the final step we use the first-order condition (2.41),

βEs (Vx(Xs+1, Zs+1)) = − fu(Xs, us)

gu(Xs, us, Zs)
,
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making use of the fact that Es(gu(Xs, us, Zs)) = gu(Xs, us, Zs) is deterministic conditional

on the information set available at s. Inserting into (2.42) by using a similar argument for

Es(gx(Xs, us, Zs)) = gx(Xs, us, Zs) we obtain

Vx(Xs, Zs) = fx(Xs, us) − gx(Xs, us, Zs)
fu(Xs, us)

gu(Xs, us, Zs)
,

Vx(Xs+1, Zs+1) = fx(Xs+1, us+1) − gx(Xs+1, us+1, Zs+1)
fu(Xs+1, us+1)

gu(Xs+1, us+1, Zs+1)
,

where we shifted the resulting expression also one period ahead. Inserting both expressions

back into (2.42) we managed replacing the costate by terms of known functions f and g,

fu(Xs, us)

gu(Xs, us, Zs)
= βEs

(
fu(Xs+1, us+1)

gu(Xs+1, us+1, Zs+1)
gx(Xs+1, us+1, Zs+1) − fx(Xs+1, us+1)

)

,

and obtained the discrete-time Euler equation of the stochastic control problem in (2.39).

Exercise 2.2.3 (Real business cycles) Consider the prototype real business cycles (RBC)

model as in King et al. (1988). Suppose a benevolent planner maximizes

maxE
∞∑

t=0

βt (lnCt + θ ln(1 −Nt)) , s.t. Kt+1 = AtN
α
t K

1−α
t − Ct + (1 − δ)Kt, K0 > 0.

Ct is commodity consumption, Nt is the labor input and Kt is the predetermined capital stock

in period t. At denotes stochastic temporary changes in total factor productivity, δ is the rate

of physical depreciation of capital, and 0 < α < 1 is the output elasticity of labor. Solve the

optimization problem and obtain the Euler equation for consumption.
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Chapter 3

Stochastic models in continuous time

3.1 Topics in stochastic differential equations and rules

for differentials

Literature: Øksendal (1998, chap. 4,5), Kloeden and Platen (1999, chap. 3,4), Spanos (1999,

chap. 8), Protter (2004, chap. 1,2), Wälde (2009, chap. 10)

The objective of this chapter is to introduce concepts for stochastic models in continuous

time, where usually uncertainty enters in the form of stochastic differential equations to

model specific dynamics, e.g., the evolution of prices or technology frontiers.

3.1.1 Definitions

For later reference we consider two fundamental stochastic processes, the Brownian motion

and the Poisson process. While the Brownian motion is often used to model the behavior of

prices (e.g., returns, exchange rates, interest rates), the Poisson process captures rare events.

Definition 3.1.1 (Standard Brownian motion) The stochastic process {Bt}t∈[0,∞) is said

to be a standard Brownian motion process if the following conditions hold,

(i) Bt+h − Bt ∼ N(0, |h|), for (t+ h) ∈ [0,∞),

(ii) Bt has independent increments, that is for 0 ≤ t1 < t2 < t3 <∞,

(

Bt1 − Bt2

Bt2 − Bt3

)

∼ N

((

0

0

)

,

(

t2 − t1 0

0 t3 − t2

))

,

(iii) B0 = 0.
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Remark 3.1.2 There is confusion in the literature in so far as the process first noticed by

Brown is called a Brownian motion or a Wiener process. We closely follow Spanos (1999)

and refer to the continuous-time process as a Brownian motion and its discrete counterpart

as a Wiener process. This, however, is not standard terminology.

Remark 3.1.3 For {Bt}t∈[0,∞) being a Brownian motion, the following properties hold

1. {Bt}t∈[0,∞) is a Markov process. This follows directly from the fact that

Bt2+t1 = Bt1 + [Bt1+t2 − Bt1 ],

which says that the new state Bt2+t1 is the sum of the old state Bt1 and an independent

Normal random variable [Bt1+t2 −Bt1 ].

2. The sample paths of a Brownian motion process are continuous but almost nowhere

differentiable. Think of the zig-zag trace of a particle in a liquid.

3. The Brownian motion processes
{√

cB
(

t
c

)}

t∈[0,∞)
, where c > 0 and {Bt}t∈[0,∞) have

the same joint distribution. This property is referred to as the scaling property.

Remark 3.1.4 Related stochastic processes to the standard Brownian motion, {Bt}[0,∞), are

1. the process {µt+ σBt}t∈[0,∞) is said to be a Brownian motion with drift,

2. the process {Bt − tB1}t∈[0,1] is said to be a Brownian bridge,

3. the process
{

µ+ σ√
2θ
e−θtB

(
e2θt
)}

t∈[0,∞)
is said to be an Ornstein-Uhlenbeck process,

4. the process {
∫ t

0
Budu}t∈[0,∞) is said to be an integrated Brownian motion process,

5. the process {exp(Bt)}t∈[0,∞) is said to be a geometric Brownian motion process.

Definition 3.1.5 (Poisson process) The stochastic process {Nt}t∈[0,∞) is said to be a Pois-

son process if the following conditions hold,

1. Nt = max{n : Sn(t) ≤ t}t∈[0,∞) is a point process, where

2. Sn(t) =
∑n

i=1Xi for n ≥ 1, S0 = 0 is a partial sum stochastic process, and

3. Xn with n = 1, 2, ... is a sequence of independent identically exponentially distributed

random variables.
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Remark 3.1.6 Let Nt denote the number of phone calls up to date t, where random variable

Sn(t) = min{t : N(t) = n} then is the date at which the telephone rings for the nth time,

and Xn = Sn − Sn−1, n = 1, 2, 3, ... denotes the time interval between calls n and n− 1.

Remark 3.1.7 Since the event Nt ≥ k is equivalent to Sk(t) ≤ t, it follows

P (Nt ≥ k) = P (Sk(t) ≤ t).

In view of the fact that Sn(t) is the sum of i.i.d. exponentially distributed random variables,

we can deduce the density function of Nt as follows (see Spanos 1999, chap. 8.11),

fN (k) = P (Nt = k) = P (Sk(t) ≤ t) − P (Sk+1(t) ≤ t) =
e−λt(λt)k

k!
.

The Poisson process {Nt}t∈[0,∞) has mean and variance

E(Nt) = λt, V ar(Nt) = λt,

i.e., the standard Poisson process is not stationary since its first two moments depend on t.

It follows that dNt = 1 with probability λdt and dNt = 0 with probability (1 − λ)dt.

3.1.2 Stochastic differential equations

These stochastic processes can now be combined in various ways to construct more complex

processes, which can nicely be represented by stochastic differential equations. An ordinary

differential equation,

ẋ =
dx

dt
= a(t, x(t)),

may be thought of as a degenerated case of a stochastic differential equation in the absence

of uncertainty. Using the symbolic differential form, we could write

dx = a(t, x(t))dt

or more accurately,

x(t) = x0 +

∫ t

0

a(s, x(s))ds.

A generalized formulation can be obtained for stochastic processes. The Brownian motion

constitutes the principal element for a class called diffusion processes based on stochastic
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differentials. By a stochastic differential we mean an expression of the type

dXt = a(t, Xt)dt+ b(t, Xt)dBt, (3.1)

which is just a symbolic way of writing

Xt = Xs +

∫ t

s

a(u,Xu)du+

∫ t

s

b(u,Xu)dBu, (3.2)

for any 0 ≤ s ≤ t. The first integral in (3.2) is an ordinary Riemann or Lebesgue integral

and the second integral is an Itô integral. In general, Xt inherits the non-differentiability of

sample paths from the Brownian motion in the stochastic integral.

Remark 3.1.8 Stochastic differentials can also be obtained using other processes,

dXt = a(t, Xt)dt+ b(Xt−)dNt.

Nt is a càdlàg (from the French “continue à droite, limite à gauche”) Poisson process, and

Nt− denotes the left-limit limτ→tNτ . Xt coincides with Xt− if Xt has continuous paths. We

may define stochastic differentials using combination of stochastic processes,

dXt = a(t, Xt)dt+ b(t, Xt)dBt + c(Xt−)dNt.

Moreover, the coefficients can be stochastic, i.e., with direct dependence on the forcing process

dXt = a(t, Xt, Nt)dt+ b(Xt−)dNt.

There is a price for the convenient notation, namely that stochastic differentials, interpreted

in terms of stochastic integrals, do not transform according to the rules of classical calculus.

Instead an additional term appears and the resulting expression is called the Itô formula.

3.1.3 Functions of stochastic processes

An important aspect when working with stochastic processes in continuous time is that rules

for computing differentials of functions of those processes are different from classical ones.

We start with one stochastic process, in particular with a one-dimensional Brownian motion,

and generalize results for higher dimensions and other stochastic processes afterwards.
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Computing differentials for Brownian motions

The Itô formula as a rule can be found in many texts (e.g. Øksendal 1998, Theorem 4.1.2).

Theorem 3.1.9 (Itô’s formula) Let Xt be a scalar stochastic process given by

dXt = a(t)dt+ b(t)dBt.

Let g(t, x) be a C2 function on [0,∞) × R. Then, Yt = g(t, Xt) obeys the differential

dYt =
∂

∂t
g(t, Xt)dt+

∂

∂x
g(t, Xt)dXt + 1

2

∂2

(∂x)2
g(t, Xt)(dXt)

2,

where (dXt)
2 = (dXt)(dXt) is computed according to the rules,

dtdt = dtdBt = 0, dBtdBt = dt.

Using (dXt)
2 = a2(t)dtdt+ 2a(t)b(t)dtdBt + b2(t)(dBt)

2 = b2(t)dt, we obtain

dYt =

(
∂

∂t
Yt + a(t)

∂

∂x
Yt + 1

2
b2(t)

∂2

(∂x)2
Yt

)

dt+ b(t)
∂

∂x
YtdBt. (3.3)

Note that Itô’s formula is also referred to as change of variables. A similar rule can be stated

and proved for the class of semimartingales, which includes Lévy processes, in particular the

Poisson process and the Brownian motion (cf. Protter 2004, chap. 2.3, 2.7, Theorem 2.32).

Remark 3.1.10 As a sketch of a proof, consider the stochastic differential dXt = adt+bdBt,

or equivalently, Xt = Xs +a(t− s)+ b(Bt −Bs), and the C2 function g(t, Xt). Using Taylors

theorem, a second-order approximation around s and Xs is

g(t, Xt) ≈ g(s,Xs) +
∂

∂t
g(s,Xs)(t− s) +

∂

∂x
g(s,Xs)(Xt −Xs)

+1
2

(
∂2

(∂x)2
g(s,Xs)(Xt −Xs)

2 + 2
∂2

∂x∂t
g(s,Xs)(Xt −Xs)(t− s) +

∂2

(∂t)2
g(s,Xs)(t− s)2

)

.

Substitute ∆g(t, Xt) = g(t, Xt) − g(s,Xs), ∆Xt = Xt −Xs, and ∆t = t− s,

∆g(t, Xt) ≈
∂

∂t
g(s,Xs)∆t +

∂

∂x
g(s,Xs)∆Xt

+1
2

(
∂2

(∂x)2
g(s,Xs)(∆Xt)

2 + 2
∂2

∂x∂t
g(s,Xs)∆Xt∆t+

∂2

(∂t)2
g(s,Xs)(∆t)

2

)

.

Here, ∆Xt = a∆t + b∆Bt, and ∆Bt is of order
√

∆t since V ar(∆Bt) = E ((∆Bt)
2) = ∆t.
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As ∆t→ dt, all terms with higher orders, ∆t∆t,∆t∆Bt → 0, ∆Bt∆Bt → dt, and thus

(∆Xt)
2 = a2(∆t)2 + 2ab∆t∆Bt + b2(∆Bt)

2 → b2dt.

Example 3.1.11 Consider the simplest case where Xt = Bt and g(t, x) = µt + σx. Then,

Yt = g(t, Bt) = µt+ σBt, and using Itô’s formula Yt obeys the differential

dYt = µdt+ σdBt,

which is the stochastic differential of a Brownian motion with drift. Observe that if g(t, x)

is linear, the Itô formula reduces to the chain rule of classical calculus.

Example 3.1.12 Consider the case where dXt = σ(t)dBt and the function g(t, x) = ex.

Then Yt = g(t, Xt) = exp(Xt), and from Itô’s formula Yt obeys the differential

dYt = 1
2
σ2(t)Ytdt+ σ(t)YtdBt,

which is the stochastic differential of a geometric Brownian motion (geometric diffusion).

Observe that using g(t, x) = ex− 1
2

∫ t

0
σ2(u)du we obtain

dYt =
(
−1

2
σ2(t)Yt + 1

2
σ2(t)Yt

)
dt+ σ(t)YtdBt = σ(t)YtdBt.

This shows that the counterpart of the exponential in the Itô calculus is exp(Xt−1
2

∫ t

0
σ2(u)du).

Exercise 3.1.13 Find the following stochastic integrals in terms of classical calculus

1. ∫ t

0

bdBs,

2. ∫ t

0

sdBs,

3. ∫ t

0

f(s)dBs,

4.
∫ t

0

BsdBs,

where Bt is a standard Brownian motion.
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Remark 3.1.14 An Itô stochastic integral can be thought of as a random variable on the

bounded interval [t0, t],

Xt = Xt0 +

∫ t

t0

f(s, Bs)dBs,

satisfying the following properties

1. E(Xt2 −Xt1) = 0 for t0 ≤ t1 ≤ t2,

2. E(X2
t ) =

∫ t

t0
E (f(s, Bs)

2) ds <∞,

3.
∫ t2

t0
f(s, Bs)dBs =

∫ t1
t0
f(s, Bs)dBs +

∫ t2
t1
f(s, Bs)dBs for t0 ≤ t1 ≤ t2.

The Itô formula can easily be generalized to an m-dimensional Brownian motion Zt,

where the Zi(t) for i = 1, 2, ..., m are scalar processes which are pairwise correlated,

E [(Zi(t) − Zi(s))(Zj(t) − Zj(s))] = (t− s)ρij, 0 ≤ s ≤ t, i, j = 1, 2, ..., m,

where ρij is the correlation coefficient between increments of stochastic processes. When the

Brownian motion are pairwise independent, then ρij = 0 for i 6= j and ρij = 1 for i = j. An

Itô formula for correlated Brownian motions is below (e.g. Merton 1999, Theorem 5.1).

Theorem 3.1.15 (Itô’s formula for systems of Brownian motions) Let

dXt = u(t, Xt)dt+ σ(t, Xt)dZt,

be an n-dimensional Itô process in matrix notation where

Xt =







X1(t)
...

Xn(t)






, u(t, Xt) =







u1

...

un






, σ(t, Xt) =







σ11 ... σ1m

...
...

σn1 ... σnm






, dZt =







dZ1(t)
...

dZm(t)






.

Let g(t, x) = (g1(t, x), ..., gp(t, x)) be a C2 map from [0,∞) × Rn into Rp. Then the process

Yt = g(t, Xt) is again an Itô process, whose component k, obeys the differential

dYk(t) =
∂

∂t
gk(t, Xt) +

n∑

i=1

∂

∂xi
gk(t, Xt)dXi + 1

2

n∑

i=1

n∑

j=1

∂2

∂xi∂xj
gk(t, Xt)dXidXj, (3.4)

where

dtdt = dtdZi = 0, dZidZj = ρijdt,

and ρij is the correlation coefficient between increments of the stochastic processes.
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Example 3.1.16 Consider two independent stochastic processes X1 and X2,

dXt = utdt+

[

γ11 0

0 γ22

]

dBt ≡ utdt+ γdBt,

or equivalently, consider a two-dimensional system of stochastic differential equations,

dX1(t) = u1(t)dt+ γ11dB1(t),

dX2(t) = u2(t)dt+ γ22dB2(t),

and let g(t, x) = x1x2 be a C2 function on R2 → R. The stochastic differential for the product

scalar process Yt = X1X2 reads dYt = X2dX1 + X1dX2 + dX1dX2, where (dX1)
2 = γ2

11dt,

(dX2)
2 = γ2

22dt, dX1dX2 = 0. To summarize, we obtain

dYt = (u1(t)X2 + u2(t)X1)dt+ γ11X2dB1(t) + γ22X1dB2(t).

Example 3.1.17 Consider two dependent stochastic processes X1 and X2,

dXt = utdt+

[

γ11 γ12

γ21 γ22

]

dBt ≡ utdt+ γdBt,

or equivalently, consider a two-dimensional system of stochastic differential equations,

dX1(t) = u1(t)dt+ γ11dB1(t) + γ12dB2(t),

dX2(t) = u2(t)dt+ γ21dB1(t) + γ22dB2(t),

and let g(t, x) = x1x2 be a C2 function on R2 → R. The stochastic differential for the

product scalar process Yt = X1X2 reads dYt = X2dX1 +X1dX2 + dX1dX2, where (dX1)
2 =

(γ2
11 + γ2

12)dt, (dX2)
2 = (γ2

21 + γ2
22)dt, and dX1dX2 = (γ11γ21 + γ22γ12)dt. Hence,

dYt = (u1(t)X2+u2(t)X1+γ11γ21+γ22γ12)dt+(γ11X2+γ21X1)dB1(t)+(γ22X1+γ12X2)dB2(t).

Example 3.1.18 Consider two dependent stochastic processes X1 and X2,

dXt = utdt+

[

σ1 0

0 σ2

]

dZt ≡ utdt+ diag(σ)dZt,
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or equivalently, consider a two-dimensional system of stochastic differential equations,

dX1(t) = u1(t)dt+ σ1dZ1(t),

dX2(t) = u2(t)dt+ σ2dZ2(t),

and let g(t, x) = x1x2 be a C2 function on R2 → R. Then, the stochastic differential

for the product scalar process Yt = X1X2 reads dYt = X2dX1 + X1dX2 + dX1dX2, where

(dX1)
2 = σ2

1dt, (dX2)
2 = σ2

2dt, dX1dX2 = (ρ12σ1σ2)dt. Hence,

dYt = (u1(t)X2 + u2(t)X1)dt+ σ1X2dZ1(t) + σ2X1dZ2(t) + ρ12σ1σ2dt.

The Itô formula contains an m-dimensional standard Brownian motion Bt, where Bi(t)

for i = 1, 2, ..., m are a scalar processes which are pairwise independent,

E [(Bi(t) − Bi(s))(Bj(t) − Bj(s))] = (t− s)δij, 0 ≤ s ≤ t, i, j = 1, 2, ..., m,

and δij is the Kronecker delta symbol defined by,

δij =

{

1 : i = j

0 : i 6= j
.

Observe that the appropriate Itô formula is contained in Theorem 3.1.15 for ρij = δij. Note

that the stochastic differential is simply the sum of the differentials of each stochastic process

independently, plus a term capturing the correlation structure.

Computing differentials for Poisson processes

When we consider the stochastic differential of a function of a variable that is driven by a

scalar Poisson process, we need to take into account the following version of Itô’s formula.

Theorem 3.1.19 (cf. Sennewald 2007, Theorem 1) Let Xt be an stochastic process,

dXt = a(t, Xt)dt+ c(t, Xt−)dNt.

Let g(t, x) be a C1 function on [0,∞) × R → R. Then, Yt = g(t, Xt) obeys the differential

dYt =
∂

∂t
g(t, Xt)dt+ a(t, Xt)

∂

∂x
g(t, Xt)dt+ (g(t, Xt− + c(t, Xt−)) − g(t, Xt−))dNt. (3.5)
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This rule is intuitive, because the differential of a function is given by the usual chain rule

plus an obvious jump term. If the point process Nt increases by one, Xt increases by c(t, Xt−),

which translates into a jump in Yt from g(t, Xt−) to the new value g(t, Xt− + c(t, Xt−)), or

equivalently, it jumps by g(t, Xt− + c(t, Xt−))− g(t, Xt−). Remember that Nt simply counts

the arrivals up to t and a new arrival lets Nt increase by one, that is dNt = 1.

Theorem 3.1.20 (cf. Sennewald 2007, Theorem 1) Let

dXt = u(t, Xt)dt+ v(t, Xt−)dNt

be an n-dimensional Poisson process in matrix notation, where

Xt =







X1(t)
...

Xn(t)






, u(t, Xt) =







u1

...

un






, v(t, Xt−) =







v11 ... v1m

...
...

vn1 ... vnm






, dNt =







dN1(t)
...

dNm(t)






.

Let g(t, x) be a C1 map from [0,∞) × Rn into R. Then the scalar process Yt = g(t, Xt) is

again a Poisson process, and obeys the differential

dYt =
∂

∂t
g(t, Xt)dt+

n∑

i=1

∂

∂xi
g(t, X)uidt+

m∑

j=1

(g(t, Xt− + vj) − g(t, Xt−)) dNj(t), (3.6)

where vj denotes the jth column of the n×m matrix v(t, Xt−).

Remark 3.1.21 A stochastic integral driven by a Poisson process is a random variable on

the bounded interval [t0, t],

Xt = Xt0 +

∫ t

t0

f(s,Ns)dNs,

satisfying the following properties (cf. Garćıa and Griego 1994)

1.
∫ t

t0
f (s,Ns) dNs −

∫ t

t0
f (Ns, s)λds is a martingale,

2.
∫ t2

t0
f(s,Ns)dNs =

∫ t1
t0
f(s,Ns)dNs +

∫ t2
t1
f(s,Ns)dNs for t0 ≤ t1 ≤ t2,

3. E(Xt2 −Xt1) = E
(∫ t2

t1
f(s,Ns)dNs

)

= E
(∫ t2

t1
f(s,Ns)λds

)

for t0 ≤ t1 ≤ t2.

Example 3.1.22 Consider two dependent stochastic processes

dXt = u(t)dt+

[

v11 v12

v21 v22

]

dNt,
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or equivalently, consider a two-dimensional system of stochastic differential equations,

dX1(t) = u1(t)dt+ v11dN1(t) + v12dN2(t),

dX2(t) = u2(t)dt+ v21dN1(t) + v22dN2(t),

and let g(t, x) a C1 function [0,∞) × R2 → R. Then, the process Yt = g(t, Xt) obeys

dYt =
∂

∂t
g(t, Xt)dt+

[
∂

∂x1
g(t, Xt)

∂
∂x2

g(t, Xt)
]

u(t)dt

+
[

g(t, Xt− + v1) − g(t, Xt−) g(t, Xt− + v2) − g(t, Xt−)
]

dNt,

where

v1 ≡
[

v11

v21

]

, v2 ≡
[

v12

v22

]

.

This feature is frequently encountered in economic models when there is one economy-wide

source of uncertainty, say new technologies arrive or commodity price shocks occur according

to some Poisson process, and many variables in this economy (for example relative prices)

are affected simultaneously by this shock (cf. Wälde 2009, Lemma 10.1).

Computing differentials for jump-diffusions

This section replicates a version of Itô’s formula (change of variables) for a setting where

variables are driven by Brownian motion and Poisson processes, henceforth jump-diffusion

models (see Sennewald 2007, chap. 6). Similar rules for computing differentials can be found

in Wälde (2009, chap. 10), a more general version is in Protter (2004, Theorem 32).

Theorem 3.1.23 (Itô’s formula for jump-diffusions) Let

dXt = a(t, Xt)dt+ b(t, Xt)dBt + c(t, Xt−)dNt

be a scalar stochastic process, where Bt is a scalar Brownian motion, Nt is a scalar Poisson

process, both forcing processes being stochastically independent. Let g(t, x) be a C 2 function

on [0,∞) × R. Then, Yt = g(t, Xt) obeys the differential

dYt =

(
∂

∂t
g(t, Xt) + a(t, Xt)

∂

∂x
g(t, Xt) + 1

2
b2(t, Xt)

∂2

(∂x)2
g(t, Xt)

)

dt

+b(t, Xt)
∂

∂x
g(t, Xt)dBt + (g(t, Xt− + c(t, Xt−)) − g(t, Xt−))dNt. (3.7)
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Note that as long as no jump occurs, dNt = 0, we simply obtain the case of a scalar

Brownian motion. If a jump occurs, dNt = 1, the system jumps by c(t, Xt−), and continues

as a Brownian motion with drift until the next jump occurs. Thus, the rule (3.7) simply

extends previous rules by allowing for possible jump terms.

Exercise 3.1.24 (Option pricing) Let the price of a stock, St follow

dSt = αStdt+ σStdBt.

Bt is a standard Brownian motion, i.e., α denotes the (instantaneous) expected rate of return

and σ2 its variance. Suppose the price of an option is Yt = g(t, St). Let the price of a riskless

asset, Pt, follow dPt = rPtdt. Obtain a pricing formula for Yt, given the portfolio strategy of

holding n1 units of stocks, n2 units of options, and n3 units of the riskless asset.

This exercise employs Itô’s formula to derive a pricing formula for options as in Black

and Scholes (1973) closely following Merton (1976).

3.1.4 Solutions of stochastic differential equations

As with linear ODEs, the solution of a linear stochastic differential equation (SDE) can be

found explicitly. The method of solution also involves an integrating factor, or equivalently,

a fundamental solution of an associated homogeneous differential equation.

SDEs driven by Brownian motions

Below we will describe solution techniques for scalar SDEs, while extensions to linear systems

of SDEs are straightforward (cf. Kloeden and Platen 1999, chap. 4.2, 4.8),

dXt = (a1(t)Xt + a2(t))dt+ (b1(t)Xt + b2(t))dBt, (3.8)

where the coefficients a1, a2, b1, b2 are specified functions of time t or constants. When all

coefficients are constants the SDE is autonomous and its solutions are homogeneous Markov

processes. When a2(t) ≡ 0 and b2(t) ≡ 0, (3.8) reduces to the homogeneous linear SDE

dXt = a1(t)Xtdt+ b1(t)XtdBt, (3.9)

with multiplicative noise. When b1(t) ≡ 0, in (3.8) the SDE has the form

dXt = (a1(t)Xt + a2(t))dt+ b2(t)dBt, (3.10)
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with additive noise, and the SDE is said to be linear in the narrow-sense.

Consider the homogeneous equation associated with (3.10), dXt = a1(t)Xtdt, which is an

ODE with the fundamental solution

Φt,t0 ≡ exp

(∫ t

t0

a1(s)ds

)

. (3.11)

Applying Itô’s formula (3.7) to the transformation g(t, x) = Φ−1
t,t0x, we obtain

d(Φ−1
t,t0Xt) = −a1(t)Φ

−1
t,t0Xtdt+ Φ−1

t,t0dXt

= −a1(t)Φ
−1
t,t0
Xtdt+ a1(t)Φ

−1
t,t0
Xtdt+ a2(t)Φ

−1
t,t0
dt+ b2(t)Φ

−1
t,t0
dBt

= a2(t)Φ
−1
t,t0
dt+ b2(t)Φ

−1
t,t0
dBt.

Observe that Φ−1
t,t0 can be interpreted as an integrating factor for (3.10). Integrating both

sides gives the solution to the SDE with additive noise (3.10),

Xt = Φt,t0

(

Xt0 +

∫ t

t0

a2(s)Φ
−1
s,t0
ds+

∫ t

t0

b2(s)Φ
−1
s,t0
dBs

)

, (3.12)

where Φt,t0 is given in (3.11).

Exercise 3.1.25 Use Itô’s formula to prove that (3.12) indeed is a solution of (3.10).

For the linear case with multiplicative noise, we may use the result for the linear SDE

with additive noise. It follows by Itô’s formula that d(lnXt) for the homogeneous equation

of the SDE with multiplicative noise in (3.9) obeys

d(lnXt) = a1(t)dt− 1
2
b21(t)dt + b1(t)dBt,

which becomes a linear SDE with additive noise in lnXt. Integrating both sides gives the

fundamental solution to the homogeneous SDE with multiplicative noise (3.9),

Xt = Xt0 exp

(∫ t

t0

(
a1(s) − 1

2
b21(s)

)
ds+

∫ t

t0

b1(s)dBs

)

. (3.13)

In fact, the solution in (3.13) coincides with (3.11) for b1(t) ≡ 0. In that we may use the

integrating factor for the general linear SDE in (3.8),

Φt,t0 ≡ exp

(∫ t

t0

(
a1(s) − 1

2
b21(s)

)
ds+

∫ t

t0

b1(s)dBs

)

, (3.14)
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where d (Φt,t0) = a1(t)Φt,t0dt + b1(t)Φt,t0dBt. Observe that both random variables Φt,t0 and

Xt from (3.8) have stochastic differentials involving the same process Bt, so Itô’s formula

must be used with the transformation g(x1, x2) = g(Φ−1
t,t0 , Xt). After some algebra,

d(Φ−1
t,t0Xt) = (a2(t) − b1(t)b2(t)) Φ−1

t,t0dt+ b2(t)Φ
−1
t,t0dBt.

Integrating both sides gives the solution to the general linear SDE in (3.8) as

Xt = Φt,t0

(

Xt0 +

∫ t

t0

(a2(s) − b1(s)b2(s)) Φ−1
s,t0ds+

∫ t

t0

b2(s)Φ
−1
s,t0dBs

)

, (3.15)

where Φt,t0 is given in (3.14). Observe that for b1 ≡ 0, the general solution in (3.15) indeed

reduces to solution of the narrow-sense linear SDE in (3.12).

Exercise 3.1.26 (Langevin equation) A molecular bombardment of a speck of dust on a

water surface results into a Brownian motion. Compute the velocity, Xt, of a particle when

the acceleration of the particle obeys dXt = −aXtdt+ bdBt.

Example 3.1.27 (Option pricing) Consider an European call, i.e., an option which can

be exercised only at maturity, gives the holder the right to buy the asset at fixed maturity T

and price S̄ (strike price). Observe that the value of the option, Yt = g(t, St), satisfies

Yt = g(t, 0) = 0, YT = g(T, ST ) = max{0, ST − S̄}.

Using these boundary conditions, the partial differential equation (PDE) for the price of the

option, ∂Yt

∂t
= rYt − rSt

∂Yt

∂S
− 1

2
σ2S2

t
∂2Yt

∂S2 has the solution

Yt = Φ(d1(t, St))St − e−(T−t)rΦ(d2(t, St))S̄ with

d1(t, St) =
ln(St/S̄) +

(
r + 1

2
σ2(T − t)

)

σ
√
T − t

, d2(t, St) =
ln(St/S̄) +

(
r − 1

2
σ2(T − t)

)

σ
√
T − t

,

where Φ(·) is the cdf of the standard normal distribution (Black and Scholes 1973, p.644).

Remark 3.1.28 (Computing moments) If we take the expectation of the integral form

of equation (3.8) and use the property of an Itô stochastic integral, E
∫
f(s,Xs)dBs = 0, we

obtain an ODE for the mean, m1(t) ≡ E(Xt), namely

dm1(t) = (a1(t)m1(t) + a2(t))dt.
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Similarly, the second moment, m2(t) ≡ E(X2
t ), satisfies the ODE,

dm2(t) =
((

2a1(t) + b21(t)
)
m2(t) + 2(a2(t) + b1(t)b2(t))m1(t) + b22(t)

)
dt.

The solutions to the ODEs above are the time-dependent moments of the distribution of Xt.

Letting t→ ∞, we may obtain the moments of some limiting distribution.

Exercise 3.1.29 (Geometric Brownian motion) Use Itô’s formula to solve

dPt = µPtdt+ σPtdBt,

where Pt denotes the size of population. Obtain the expected rate of population growth.

SDEs driven by Poisson processes

Consider the following scalar SDE (cf. Garćıa and Griego 1994),

dXt = (a1(t)Xt + a2(t))dt + (b1(t)Xt− + b2(t))dNt, (3.16)

where the coefficients a1, a2, b1, b2 are specified functions of time t or constants. Similar to

the approach of solving SDEs with driven by Brownian motions, we use an educated guess

of the fundamental solution to the homogeneous differential equation of (3.16) as

Φt,t0 ≡ exp

(∫ t

t0

a1(s)ds+

∫ t

t0

ln(1 + b1(s))dNs

)

, (3.17)

where d (Φt,t0) = a1(t)Φt,t0dt+ b1(t)Φt−,t0dNt. Observe that both random variables Φt,t0 and

Xt from (3.16) have stochastic differentials involving the same process Nt, so the Itô formula

must be used with the transformation g(x1, x2) = g(Φ−1
t,t0 , Xt). After some algebra,

d(Φ−1
t,t0
Xt) = a2(t)Φ

−1
t,t0
dt+

b2(t)

1 + b1(t)
Φ−1

t−,t0
dNt.

Integrating both sides gives the solution to the general linear SDE in (3.16) as

Xt = Φt,t0

(

Xt0 +

∫ t

t0

a2(s)Φ
−1
s,t0
ds+

∫ t

t0

b2(s)

1 + b1(s)
Φ−1

s−,t0
dNs

)

, (3.18)

where the fundamental solution Φt,t0 is given in (3.17).
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Exercise 3.1.30 (Geometric Poisson process) Use Itô’s formula to solve

dAt = µAtdt+ γAt−dNt, γ > −1.

Obtain the expected growth rate of and illustrate your result graphically.

Reducible stochastic differential equations

With an appropriate transformation Xt = U(t, Yt) a nonlinear SDE

dYt = a(t, Yt)dt+ b(t, Yt)dBt + c(t, Yt−)dNt,

may be reduced to a linear SDE in Xt,

dXt = (a1(t)Xt + a2(t)) dt+ (b1(t)Xt + b2(t)) dBt + (c1(t)Xt− + c2(t)) dNt.

In principle, all reducible ODEs are candidates for reducible SDEs. A reducible SDE has an

explicit solution provided that the integrals exist Kloeden and Platen (1999, chap. 4.4).

For illustration, consider a stochastic Bernoulli equation,

dXt = (aXn
t + bXt)dt+ cXtdBt + JtXt−dNt,

a stochastic process with constants coefficients a, b, c ∈ R, and polynomial drift of degree

n 6= 1. Let Bt denote a Brownian motion, Nt is a Poisson process, and Jt is a stochastically

independent random variable where the first two moments exist. It can be shown that

Xt = Φt,t0

(

X1−n
t0 + (1 − n)a

∫ t

t0

Φn−1
s,t0 ds

) 1
1−n

, (3.19)

where

Φt,t0 = exp

(
(
b− 1

2
c2
)
(t− t0) + (Bt −Bt0)c +

∫ t

t0

ln(1 + Ju)dNu

)

.

A special case for n = 2 is referred to as the stochastic Verhulst equation.

3.1.5 An example: Merton’s model of growth under uncertainty

This section introduces Merton’s asymptotic theory of growth under uncertainty, where the

dynamics of the capital-to-labor ratio is a diffusion-type stochastic process. The particular

source of uncertainty chosen is the population size although the analysis would be equally

applicable to other specifications (Merton 1999, chap. 17).
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Consider a one-sector growth model of the Solow type with a constant-returns-to-scale,

strictly concave production function, Yt = F (Kt, Lt), where Yt denotes output, Kt denotes

the capital stock, Lt denotes the labor force. Capital will be accumulated in a deterministic

way according to

dKt = (Yt − δKt − Ct)dt, (3.20)

where δ is the rate of physical depreciation and Ct is aggregate consumption.

The source of uncertainty is the population size Lt. Suppose that

dLt = nLtdt+ σLtdBt, (3.21)

where {Bt}∞t=0 is a standard Brownian motion. By inspection of the random variable Lt will

have a log-normal distribution with E0(lnLt) = lnL0 + (n− 1
2
σ2)t, and V ar0(lnLt) = σ2t.

Exercise 3.1.31 Show that E0(lnLt) = lnL0 + (n− 1
2
σ2)t and V ar0(lnLt) = σ2t, whereas

E0(Lt) = L0e
nt and V ar0(Lt) = e2nt

(
eσ2t − 1

)
.

As in the certainty model, the dynamics can be reduced to a one-dimensional process for

variables in intensive form. Using Itô’s formula, the capital stock per capita, kt ≡ Kt/Lt

follows the stochastic differential equation

dkt = (yt − δkt − ct)dt− ktndt+ kσ2dt− σktdBt

= (yt − (δ + n− σ2)kt − ct)dt− σktdBt

≡ b(kt)dt−
√

a(kt)dBt,

where yt ≡ Yt/Lt = f(kt) denotes output, and ct ≡ Ct/Lt = (1 − s)Yt/Lt is consumption

both in intensive form (per capita). Hence, the accumulation equation in intensive form is a

diffusion process. In particular, the transition probabilities for kt are completely determined

by the functions b(kt) ≡ sf(kt) − (δ + n − σ2)kt as the (instantaneous) expected change in

kt per unit of time, and a(kt) ≡ (σkt)
2 as the (instantaneous) variance.

Exercise 3.1.32 Obtain the non-stochastic steady state values for capital in intensive form

and for the rental rate of capital.

Before going on to analyze the distributional characteristics of kt, it is important to

distinguish between the stochastic process for kt and the one for Kt. While the sample path

for kt is not differentiable, the sample path for Kt is. Thus, unlike in portfolio models, there

is no current uncertainty, but only future uncertainty. The returns to capital (and labor)
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over the next instant are known with certainty (Merton 1999, p.584),

rt = f ′(kt), wt ≡ f(kt) − kf ′(kt). (3.22)

Just as in the certainty model the existence and properties of the steady-state economy

can be examined, so can they be for the uncertainty model. Instead of there being a unique

point k in the steady-state, there is now a unique distribution for k which is time and initial

condition independent and toward which the stochastic process for kt tends.

Throughout the analysis we assume that the following set of sufficient conditions for

existence are satisfied Merton (1999, p.585): (i) f(kt) is concave and satisfies the Inada

conditions, (ii) c(kt) < f(kt) for all kt < k̄ for some positive k̄, and (iii) δ+n−σ2 > 0. Then

it is possible to deduce a general functional representation for the steady-state probability

distribution. Let πk(·) be the asymptotic or limiting density function (steady-state density)

for the capital stock per effective worker. It will satisfy (Merton 1999, Appendix 17B)

πk(k) ≡ lim
t→∞

πk(kt) =
C0

a(kt)
exp

[∫ kt 2b(x)

a(x)
dx

]

, (3.23)

where C0 is a constant chosen so that
∫∞
0
πk(x)dx = 1.

A Cobb-Douglas economy (constant-savings-function)

There is a specific functional form where the steady-state distributions for all variables can

be solved for in closed form. If it is assumed that the production function is Cobb-Douglas,

f(kt) = kα
t , and that saving is a constant fraction of output (s is a constant, 0 < s ≤ 1),

then by substituting the particular functional form in (3.23) it can be shown that

πk(k) =
C0

σ2k2
exp

[∫ k 2sxα − 2(δ + n− σ2)x

σ2x2
dx

]

=
C0

σ2
k

−2(δ+n)

σ2 exp

[

− 2s

(1 − α)σ2
k−(1−α)

]

. (3.24)

To specify the constant term, we employ the condition
∫∞
0
πk(k)dk = 1. It can be obtained

indirectly from the Gamma(γ, ω) distribution (see Merton 1999, chap. 17.4).

Remark 3.1.33 (Gamma(γ, ω) distribution) The probability model, i.e., the collection

of the density function indexed by unknown parameters (γ, ω) and the parameter space, of
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the Gamma distribution is

{

f(x; (γ, ω)) =
ω−1

Γ(γ)

(x

ω

)γ−1

exp
[

−x
ω

]

, (γ, ω) ∈ R
2
+, x ∈ R+

}

.

It follows that E(X) = γω, and V ar(X) = γω2 (see Spanos 1999, p.140).

Given that capital rewards are rt = αkα−1
t , we may use the change of variable formula

for densities in Theorem 1.7.33, πr(r) = πk(k)/(|dr/dk|), to obtain

πr(r) =
C0

(1 − α)ασ2

( r

α

) σ2
−2(δ+n)

(α−1)σ2 −1

exp

[

− 2s

(1 − α)ασ2
r

]

≡ C0ω
γ−1α−γ

(1 − α)σ2

( r

ω

)γ−1

exp
[

− r

ω

]

,

where we defined γ ≡ 2(δ+n)−σ2

(1−α)σ2 > 0 and ω ≡ (1−α)ασ2

2s
. By inspection, r has a Gamma(γ, ω)

distribution, where

C0 =
(1 − α)σ2

Γ[γ]ωγα−γ

is needed to satisfy the property of a density function.

Exercise 3.1.34 Obtain the stochastic differential for the rental rate of capital, rt = αkα−1
t ,

and interpret the coefficients of the resulting stochastic differential equation. Compute the

solution to the equation and derive the mean and the variance of the limiting distribution.

Similarly, the density functions and moments of the distributions for all the variables can

be deduced from (3.24) and using Theorem 1.7.33. The analysis would be identical for other

types of consumption functions, in particular, for closed-form policy functions resulting from

stochastic control problems.

3.2 Stochastic dynamic programming

Literature: Dixit and Pindyck (1994, chap. 3,4), Kloeden and Platen (1999, chap. 6.5),

Chang (2004, chap. 4), Turnovsky (2000, chap. 15), Wälde (2009, chap. 11)

This section considers how to control a dynamic system subject to random disturbances,

studying optimal stochastic control problems under Brownian and Poisson uncertainty.

Consider the following typical infinite horizon stochastic control problem,

maxE

∫ ∞

0

e−ρtf(t, Xt, ut)dt s.t. dXt = a(t, Xt, ut)dt+ b(t, Xt, ut)dBt + c(t, Xt−, ut−)dNt,

X0 = x, (B0, N0) = z, (x, z) ∈ R × R
2
+,

where {Bt}∞t=0 is a standard Brownian motion, and {Nt}∞t=0 is a Poisson process.
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Figure 3.1: Asymptotic Gamma(γ, ω) distribution for capital rewards rt (solid), compared
to a Log-Normal distribution (dashed) with mean and variance, E(r) = γω, V ar(r) = γω2;
calibrated parameter values are (ρ, α, θ, δ, n, σ) = (.04, .6, .6, .025, .025, .2).
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3.2.1 Bellman’s principle

Closely following Sennewald (2007), we obtain the Bellman equation at time s as

ρV (s, x) = max
u∈U

{

f(s, x, u) +
1

dt
EsdV (s, x)

}

,

which is a necessary condition for optimality. Using Itô’s formula (change of variables),

dV (s, x) =

(
∂

∂t
V (s, x) + a(s, x, u)

∂

∂x
V (s, x) + 1

2
b2(s, x, u)

∂2

∂x2
V (s, x)

)

dt

+b(s, x, u)
∂

∂x
V (s, x)dBt + (V (s, x + c(s, x, u)) − V (s, x))dNt.

If we take the expectation of the integral form, and use the property of stochastic integrals,

E0

∫ t

0

b(s, x, u)
∂

∂x
V (s, x)dBs = 0,

E0

∫ t

0

(V (s, x + c(s, x, u)) − V (s, x))dNs =

∫ t

0

(V (s, x+ c(s, x, u)) − V (s, x))λds,
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assuming that the above integrals exist, in particular that the reward function satisfies some

boundedness condition (Sennewald 2007, Theorem 2), we may write

EsdV (s, x) =

(
∂

∂t
V (s, x) + a(s, x, u)

∂

∂x
V (s, x) + 1

2
b2(s, x, u)

∂2

∂x2
V (s, x)

)

dt

+(V (s, x+ c(s, x, u)) − V (s, x))λdt

≡
(
Vt + a(s, x, u)Vx + 1

2
b2(s, x, u)Vxx + (V (s, x+ c(s, x, u)) − V (s, x))λ

)
dt,

and the Bellman equation becomes (suppressing functional arguments)

ρV (s, x) = max
u∈U

{
f(·) + Vt + a(·)Vx + 1

2
b2(·)Vxx + (V (s, x+ c(·)) − V (s, x))λ

}
.

A neat result about the continuous-time formulation under uncertainty is that the Bellman

equation is, in effect, a deterministic differential equation because the expectation operator

disappears (Chang 2004, p.118). Hence, the first-order condition reads

fu(·) + au(·)Vx(s, x) + 1
2
b2u(·)Vxx(s, x) + Vx(s, x+ c(s, x, u))cu(·)λ = 0.

In contrast to deterministic control problems, we now obtain a second-order effect resulting

from the Brownian motion forcing term, and a first-order term linking the utility before and

after a jump resulting from the Poisson process.

For the evolution of the costate we use the maximized Bellman equation,

ρV (s, x) = f(·) + Vt + a(·)Vx + 1
2
b2(·)Vxx + (V (s, x+ c(·)) − V (s, x))λ,

where the optimal control is a function of the state variables (the dependence on the state

vector z has been neglected for notational convenience). We then make use of the envelope

theorem to compute the costate,

ρVx(s, x) = fx(s, x, u(x)) + Vtx + ax(s, x, u(x))Vx + a(s, x, u(x))Vxx

+1
2

(
b2x(s, x, u(x))Vxx + b2(s, x, u(x))Vxxx

)

+(Vx(s, x+ c(t, x, u(x)))(1 + cx(·)) − Vx(s, x))λ.

Collecting terms we obtain

(ρ− ax(·) + λ)Vx = fx(·) + Vtx + a(·)Vxx + 1
2
b2(·)Vxxx + 1

2
b2x(·)Vxx

+Vx(s, x+ c(·))(1 + cx(·))λ. (3.25)
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Using Itô’s formula, the costate obeys

dVx(s, x) =
(
Vtx + a(·)Vxx(s, x) + 1

2
b2(·)Vxxx

)
dt

+Vxxb(·)dBt + (Vx(s, x+ c(s, x, u)) − Vx(s, x)) dNt.

Inserting (3.25) yields

dVx(s, x) =
(
(ρ− ax(·) + λ)Vx(s, x) − fx(·) − 1

2
b2x(·)Vxx − λ(1 + cx(·))Vx(s, x+ c(·))

)
dt

+Vxxb(·)dBt + (Vx(s, x+ c(s, x, u)) − Vx(s, x)) dNt,

which describes the evolution of the costate variable.

As the final step, to obtain the Euler equation we use the first-order condition,

fu(·) = −au(·)Vx(s, x) − 1
2
b2u(·)Vxx(s, x) − Vx(s, x+ c(s, x, u))cu(·)λ.

to substitute unknown functions by known functions. In general we are not able to eliminate

shadow prices form the resulting equation. In the case where b(·) ≡ 0 and c(·) ≡ 0 we obtain

the deterministic version of the Euler equation in (1.72).

Exercise 3.2.1 (Optimal saving under Poisson uncertainty) Consider the problem,

maxE

∫ ∞

0

e−ρtu(Ct)dt s.t. dKt =
(
AKα

t L
1−α − δKt − Ct

)
dt− γKt−dNt,

K0 = x, N0 = z, (x, z) ∈ R
2
+, 0 < γ < 1,

where Nt denotes the number of disasters up to time t, occasionally destroying γ percent of

the capital stock Kt with an arrival rate λ > 0. Suppose that u′ > 0 and u′′ < 0. Solve the

planners problem and find the optimal consumption path using the inverse function.

Remark 3.2.2 (Hyperbolic utility and attitudes toward risk) The class of hyperbolic

absolute risk aversion (HARA) include the widely used (isoelastic) power utility or constant

relative risk aversion (CRRA), (negative) exponential utility or constant absolute risk aver-

sion (CARA), and quadratic utility (Merton 1999, chap. 5.6),

v(c) =
θ

1 − θ

(ηc

θ
+ δ
)1−θ

, θ 6= 0, η > 0,
ηc

θ
+ δ > 0, δ = 1 if θ → −∞

whose measure of absolute risk aversion is positive and hyperbolic in consumption, i.e.

ARA(c) = −v
′′(c)

v′(c)
=
(ηc

θ
+ δ
)−1

η
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which implies that δ > 0 for θ < 0. For CRRA utility (θ > 0), use δ = 0, for CARA utility

let θ → −∞ and use δ = 1 (which gives negative exponential utility in the limit).

Exercise 3.2.3 Let u(c) be utility generated by consuming, c > 0. Find an expression for

u(c) of the type constant absolute risk aversion (CARA), and constant relative risk aversion

(CRRA), respectively. Distinguish between the cases θ = 1 and θ 6= 1 for the latter.

Example 3.2.4 (Deriving a budget constraint) Consider an individual that invests in

both a risky asset (bond with default risk) and a riskless asset (bond). Suppose the price of

the risky asset obeys

dvt = αvtdt+ βvt−dNt, β > −1, (3.26)

while on unit of the riskless asset gives instantaneous returns r, or equivalently, dbt = rbtdt.

Let the individual receive fixed income w, and have expenditures for consumption ct. Consider

a portfolio strategy which holds n1(t) units of the risky asset, and n2(t) units of riskless bonds.

Then the value of this portfolio is at = vtn1(t) + btn2(t) and its differential obeys

dat = dn1(t)vt + dn2(t)bt + (αn1(t)vt + rn2(t)bt)dt+ βn1(t)vt−dNt.

Let θt denote the share of the risky asset, θt ≡ n1(t)vt/at, such that 1 − θt = n2(t)bt/at, and

dat = dn1(t)vt + dn2(t)bt + (αθt + (1 − θt)r)atdt+ βθt−at−dNt.

Since investors use their savings to accumulate assets,

dn1(t)vt + dn2(t)bt = (πvvtn1(t) + πbbtn2(t) + wt − ct) dt,

where πv and πb denote percentage dividend payments on the assets, respectively. Thus

dat = (πvvtn1(t) + πbbtn2(t) + wt − ct + (αθt + (1 − θt)r)at) dt+ βθt−at−dNt

= (((πv + α)θt + (1 − θt)(r + πb)) at + wt − ct) dt+ βθt−at−dNt

≡ (((rv − rb)θt + rb) at + wt − ct) dt+ βθt−at−dNt, (3.27)

where we defined

rv ≡ πv + α, rb ≡ πb + r = πb + ḃt/bt,

as the return on the risky asset conditioned on no jumps, and the riskless asset, respectively.

Both consist of dividend payments in terms of the asset price and the deterministic part.
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Exercise 3.2.5 (Optimal consumption and portfolio choice) Consider an individual

portfolio decision problem between investing in a risky asset (bond with default risk) and a

riskless asset (government bill). There is no dividend payments. Individual debt is bounded by

the individual’s lifetime labor income, discounted at the riskless rate, at > −w/r ∈ At ⊂ R.

Solve the household’s problem

maxE

∫ ∞

0

e−ρtu(ct)dt s.t. dat = (((α− r)θt + r) at + w − ct) dt+ βθt−at−dNt,

a0 = x, N0 = z, (x, z) ∈ A0 × R+.

To avoid trivial investment problems (bang-bang), assume r < α+βλ < α, where from (3.26)

λβ is the expected jump in stock returns, and α its instantaneous drift term, β > −1.

This exercise builds on Sennewald and Wälde (2006).

3.2.2 An example: The matching approach to unemployment

This section introduces a simple model of the labor market that captures the salient features

of the theory of unemployment (Pissarides 2000, chap. 1). Suppose entry into unemployment

is an exogenous process, resulting from stochastic structural change or from new entry into

the labor force. The transition out of unemployment is modeled as a trading process, with

unemployed workers and firms with job vacancies wanting to trade labor services.

The central idea is that trade in the labor market is a decentralized economic activity.

It is uncoordinated, time-consuming, and costly for both firms and workers. As a modeling

device, the matching function captures this costly trading process. It gives the number of

jobs formed at any moment in time as a function of the number of workers looking for jobs,

the number of firms looking for workers, and possibly some other variables. It has its parallel

in the neoclassical assumption of the existence of an aggregate production function.

Suppose there are L workers in the labor force. Let u denote the fraction of unmatched

workers, i.e., the unemployment rate, and v the number of vacant jobs as a fraction of the

labor force, i.e., the vacancy rate. The number of job matches is

mL = m(uL, vL), mu > 0, mv > 0, muu < 0, mvv < 0,

defining the matching function with constant returns to scale (homogeneous of degree one).

The job vacancies and unemployed workers that are matched at any point are randomly

selected from the sets vL and uL. Hence the process that changes the state of vacant jobs

is Poisson with rate m(uL, vL)/(vL).
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By the homogeneity of the matching function, m(uL, vL)/(vL) is a function of the ratio

of vacancies to unemployment only. It is convenient to introduce the v/u ratio as a separate

variable, denoted by θ, and write the rate at which vacant jobs become filled as

q(θ) ≡ m(u/v, 1) = m(1/θ, 1), q′(θ) ≤ 0.

During an infinitesimal small time interval, a vacancy is matched to an unemployed worker

with probability q(θ), so the mean duration of a vacant job is 1/q(θ). Unemployed workers

move into employment according to a related Poisson process with rate

m(uL, vL)/(uL) = m(1, v/u) = m(1, θ) = θq(θ).

The mean duration of unemployment is 1/(θq(θ)). Thus unemployed workers find jobs more

easily when there are more jobs relative to available workers, and firms with vacancies find

workers more easily when there are more workers relative to the available jobs.

Without growth or turnover in the labor force, the mean number of workers who enter

unemployment during an infinitesimal small time interval is (1−u)Lλ and the mean number

who leave unemployment is m(1, v/u)L = uLθq(θ), where θq(θ) is the transition probability

of the unemployed. The evolution of mean unemployment is given by the difference

d(uL) = (1 − u)Lλdt− θq(θ)uLdt ⇒ u̇ = (1 − u)λ− θq(θ)u.

Thus, in the steady state, the mean of unemployment is in terms of the two transition rates,

(1 − u)λ = θq(θ)u ⇒ u =
λ

λ+ θq(θ)
. (3.28)

It implies that for given λ and θ, there is a unique equilibrium mean unemployment rate. In

that λ is a model parameter whereas θ is yet an unknown. It can be shown that θ can be

determined by an equation derived from the assumption of profit maximization and that it

is unique and independent of u. Hence, the solution for u is also unique. By the properties

of the matching function, (3.28) can be represented in the vacancy-unemployment space by

a downward-sloping and convex curve (known as the Beveridge curve).

Let us now formulate an individual’s budget constraint which incorporates this idea of

labor matching (Wälde 2009, chap. 11.2). Suppose that Zt denotes labor income which has
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two uncertain states,

Zt =

{

w wage income when employed

b unemployment benefits else
,

where

dZt = −(w − b)dN1(t) + (w − b)dN2(t), Nt =

[

N1(t)

N2(t)

]

. (3.29)

Nt is a two-dimensional Poisson process where N1(t) is counting the numbers of separations,

whereas N2(t) is counting the number of matches, with state dependent arrival rates,

λ1(Zt) =

{

λ Zt = w (individual is currently employed)

0 Zt = b (is unemployed)
,

and

λ2(Zt) =

{

0 Zt = w (individual is currently employed)

θq(θ) Zt = b (is unemployed)
.

Hence, λ1 and λ2 are the probabilities of loosing and finding a job (or match), respectively.

The exogenous arrival rate λ2 is related to the matching function, which can be interpreted

as the probability of filling a vacancy. Hence, a simple individual budget constraint reads

dat = (rat + Zt − ct)dt, (3.30)

where labor income is stochastic and given by (3.29).

Exercise 3.2.6 (Matching on the labor market) Consider the control problem

maxE

∫ ∞

0

e−ρtu(ct)dt s.t. dat = (rat + Zt − ct)dt,

dZt = −(w − b)dN1(t) + (w − b)dN2(t),

a0 = x, Z0 = z, (x, z) ∈ R+ × {w, b},

where Zt denotes two-states labor income, and the Poisson process Nt counts the number of

changing states from unemployment to employment, and vice versa. Suppose that u′ > 0 and

u′′ < 0. Obtain the expected present value of being unemployed and of being employed.
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3.2.3 An example: Wälde’s model of endogenous growth cycles

Consider a closed economy with competitive markets. Suppose that technological progress

is labor augmenting and embodied in capital. A capital good Kj of vintage j allows workers

to produce with a labor productivity Aj, where A > 1 (Wälde 2005). Each vintage produces

a single output good according to the production function

Yj = Kα
j (AjLj)

1−α, 0 < α < 1,

where Lj denotes the amount of labor allocated to vintage j. The sum of labor employment

over vintages equals aggregate constant labor supply,
∑q

j=0 Lj = L. Output is used for

consumption, Ct, investment into physical capital, It, and venture-capital investment, Rt.

Market clearing demands

Yt ≡
q
∑

j=0

Yj = Ct +Rt + It.

Allowing labor to be mobile across vintages, wage rates equalize, wL
t = YL, and total

output can be represented by a simple Cobb-Douglas production function

Yt = Kα
t (AqL)1−α. (3.31)

Kt is obtained by aggregating vintage specific capital stocks,

Kt ≡ B−qK0 +B1−qK1 + ...+Kq =

q
∑

j=0

Bj−qKj, B = A
1−α

α , (3.32)

defining the capital stock index in units of the consumption good (or the most recent vintage).

As long capital goods are traded, the price of an installed unit of the most recent vintage q

equals the price of the investment good (normalized to unity). Since the different vintages

are perfect substitutes in production, the price of vintage j as from (3.32) is vj = Bj−q.

Capital goods of vintage j are subject to physical depreciation at the rate δ. If net

investment exceeds depreciation, the capital stock of this vintage accumulates according to

dKj = (Ij − δKj)dt, j = 0, ..., q. (3.33)

The objective of research is to develop capital goods that yield a higher labor productivity

than existing capital goods, i.e., that of vintage 0 until the most recent vintage q. When

research is successful, the capital stock of the next vintage q + 1 increases by the size of the
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first new machine, i.e., assumed to be a constant fraction of the capital stock index Kt,

dKq+1 = κKt−dNt, 0 < κ� 1,

where {Nt}∞t=0 is a Poisson process at arrival rate

λt = (Rt/Kt)
1−γ . (3.34)

This formulation removes the scale effect in the present model (cf. Wälde 2005). In contrast

to quality-ladder models, the output of successful research is not only a blueprint, engineers

actually construct a first machine that implies higher labor productivity. This first prototype

(or pilot plant) can be regarded as the payoff for investment into research.

Exercise 3.2.7 (Cyclical endogenous growth) Consider the planner’s problem

maxE

∫ ∞

0

e−ρtu(Ct)dt s.t. dKt = (It − δKt)dt+ (κ− s)Kt−dNt,

K0 = x, N0 = z, (x, z) ∈ R
2,

where s ≡ 1 − A− 1−α
α denotes the economic rate of depreciation, while 0 < κ� 1 is the size

of the first new machine of the next vintage. New capital goods are discovered at the arrival

rate λt = (Rt/Kt)
1−γ, 0 < γ < 1. Total output is produced according to Yt = Kα

t (AqL)1−α,

where market clearing demands Yt = Ct + Rt + It. Suppose that u′ > 0 and u′′ < 0. Obtain

the the Euler equation for optimal consumption and illustrate your results.
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